예제 #1
0
def main(args):
    # Initialize Emmental
    config = parse_args_to_config(args)
    emmental.init(log_dir=config["meta_config"]["log_path"], config=config)

    # Log configuration into files
    cmd_msg = " ".join(sys.argv)
    logger.info(f"COMMAND: {cmd_msg}")
    write_to_file(f"{emmental.Meta.log_path}/cmd.txt", cmd_msg)

    logger.info(f"Config: {emmental.Meta.config}")
    write_to_file(f"{emmental.Meta.log_path}/config.txt", emmental.Meta.config)

    # Create dataloaders
    dataloaders = get_dataloaders(args)

    # Assign transforms to dataloaders
    aug_dataloaders = []
    if args.augment_policy:
        for idx in range(len(dataloaders)):
            if dataloaders[idx].split in args.train_split:
                dataloaders[idx].dataset.transform_cls = Augmentation(
                    args=args)

    config["learner_config"]["task_scheduler_config"][
        "task_scheduler"] = AugScheduler(augment_k=args.augment_k,
                                         enlarge=args.augment_enlarge)
    emmental.Meta.config["learner_config"]["task_scheduler_config"][
        "task_scheduler"] = config["learner_config"]["task_scheduler_config"][
            "task_scheduler"]

    # Create tasks
    model = EmmentalModel(name=f"{args.task}_task")
    model.add_task(create_task(args))

    # Set cudnn benchmark
    cudnn.benchmark = True

    # Load the best model from the pretrained model
    if config["model_config"]["model_path"] is not None:
        model.load(config["model_config"]["model_path"])

    if args.train:
        emmental_learner = EmmentalLearner()
        emmental_learner.learn(model, dataloaders + aug_dataloaders)

    # Remove all extra augmentation policy
    for idx in range(len(dataloaders)):
        dataloaders[idx].dataset.transform_cls = None

    scores = model.score(dataloaders)

    # Save metrics and models
    logger.info(f"Metrics: {scores}")
    scores["log_path"] = emmental.Meta.log_path
    write_to_json_file(f"{emmental.Meta.log_path}/metrics.txt", scores)
    model.save(f"{emmental.Meta.log_path}/last_model.pth")
예제 #2
0
def main(args):
    # Initialize Emmental
    config = parse_args_to_config(args)
    emmental.init(log_dir=config["meta_config"]["log_path"], config=config)

    # Log configuration into files
    cmd_msg = " ".join(sys.argv)
    logger.info(f"COMMAND: {cmd_msg}")
    write_to_file(f"{emmental.Meta.log_path}/cmd.txt", cmd_msg)

    logger.info(f"Config: {emmental.Meta.config}")
    write_to_file(f"{emmental.Meta.log_path}/config.txt", emmental.Meta.config)

    # Create dataloaders
    dataloaders = get_dataloaders(args)

    config["learner_config"]["task_scheduler_config"][
        "task_scheduler"] = AugScheduler(augment_k=args.augment_k,
                                         enlarge=args.augment_enlarge)
    emmental.Meta.config["learner_config"]["task_scheduler_config"][
        "task_scheduler"] = config["learner_config"]["task_scheduler_config"][
            "task_scheduler"]

    # Specify parameter group for Adam BERT
    def grouped_parameters(model):
        no_decay = ["bias", "LayerNorm.weight"]
        return [
            {
                "params": [
                    p for n, p in model.named_parameters()
                    if not any(nd in n for nd in no_decay)
                ],
                "weight_decay":
                emmental.Meta.config["learner_config"]["optimizer_config"]
                ["l2"],
            },
            {
                "params": [
                    p for n, p in model.named_parameters()
                    if any(nd in n for nd in no_decay)
                ],
                "weight_decay":
                0.0,
            },
        ]

    emmental.Meta.config["learner_config"]["optimizer_config"][
        "parameters"] = grouped_parameters

    # Create tasks
    model = EmmentalModel(name=f"{args.task}_task")
    model.add_task(create_task(args))

    # Load the best model from the pretrained model
    if config["model_config"]["model_path"] is not None:
        model.load(config["model_config"]["model_path"])

    if args.train:
        emmental_learner = EmmentalLearner()
        emmental_learner.learn(model, dataloaders)

    # Remove all extra augmentation policy
    for idx in range(len(dataloaders)):
        dataloaders[idx].dataset.transform_cls = None
        dataloaders[idx].dataset.k = 1

    scores = model.score(dataloaders)

    # Save metrics and models
    logger.info(f"Metrics: {scores}")
    scores["log_path"] = emmental.Meta.log_path
    write_to_json_file(f"{emmental.Meta.log_path}/metrics.txt", scores)
    model.save(f"{emmental.Meta.log_path}/last_model.pth")
예제 #3
0
    )


if __name__ == "__main__":
    torch.backends.cudnn.deterministic = True
    # Parse cmdline args and setup environment
    parser = argparse.ArgumentParser(
        "Text Classification Runner",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )

    parser = parse_args(parser=parser)
    add_application_args(parser)

    args = parser.parse_args()
    config = parse_args_to_config(args)

    emmental.init(config["meta_config"]["log_path"], config=config)

    # Log configuration into files
    cmd_msg = " ".join(sys.argv)
    logger.info(f"COMMAND: {cmd_msg}")
    write_to_file(f"{Meta.log_path}/cmd.txt", cmd_msg)

    logger.info(f"Config: {Meta.config}")
    write_to_file(f"{Meta.log_path}/config.txt", Meta.config)

    datasets = {}
    data = []

    for task_name in args.task:
예제 #4
0
def test_parse_args(caplog):
    """Unit test of parsing args."""
    caplog.set_level(logging.INFO)

    parser = parse_args()
    args = parser.parse_args([
        "--seed",
        "0",
        "--checkpoint_all",
        "True",
        "--reset_state",
        "True",
        "--gradient_accumulation_steps",
        "3",
    ])
    assert args.seed == 0
    config = parse_args_to_config(args)

    assert config == {
        "meta_config": {
            "seed": 0,
            "verbose": True,
            "log_path": "logs",
            "use_exact_log_path": False,
        },
        "data_config": {
            "min_data_len": 0,
            "max_data_len": 0
        },
        "model_config": {
            "model_path": None,
            "device": 0,
            "dataparallel": True,
            "distributed_backend": "nccl",
        },
        "learner_config": {
            "optimizer_path": None,
            "scheduler_path": None,
            "fp16": False,
            "fp16_opt_level": "O1",
            "local_rank": -1,
            "epochs_learned": 0,
            "n_epochs": 1,
            "steps_learned": 0,
            "n_steps": None,
            "train_split": ["train"],
            "valid_split": ["valid"],
            "test_split": ["test"],
            "ignore_index": None,
            "online_eval": False,
            "optimizer_config": {
                "optimizer": "adam",
                "lr": 0.001,
                "l2": 0.0,
                "grad_clip": None,
                "gradient_accumulation_steps": 3,
                "asgd_config": {
                    "lambd": 0.0001,
                    "alpha": 0.75,
                    "t0": 1000000.0
                },
                "adadelta_config": {
                    "rho": 0.9,
                    "eps": 1e-06
                },
                "adagrad_config": {
                    "lr_decay": 0,
                    "initial_accumulator_value": 0,
                    "eps": 1e-10,
                },
                "adam_config": {
                    "betas": (0.9, 0.999),
                    "amsgrad": False,
                    "eps": 1e-08
                },
                "adamw_config": {
                    "betas": (0.9, 0.999),
                    "amsgrad": False,
                    "eps": 1e-08
                },
                "adamax_config": {
                    "betas": (0.9, 0.999),
                    "eps": 1e-08
                },
                "lbfgs_config": {
                    "max_iter": 20,
                    "max_eval": None,
                    "tolerance_grad": 1e-07,
                    "tolerance_change": 1e-09,
                    "history_size": 100,
                    "line_search_fn": None,
                },
                "rms_prop_config": {
                    "alpha": 0.99,
                    "eps": 1e-08,
                    "momentum": 0,
                    "centered": False,
                },
                "r_prop_config": {
                    "etas": (0.5, 1.2),
                    "step_sizes": (1e-06, 50)
                },
                "sgd_config": {
                    "momentum": 0,
                    "dampening": 0,
                    "nesterov": False
                },
                "sparse_adam_config": {
                    "betas": (0.9, 0.999),
                    "eps": 1e-08
                },
                "bert_adam_config": {
                    "betas": (0.9, 0.999),
                    "eps": 1e-08
                },
            },
            "lr_scheduler_config": {
                "lr_scheduler": None,
                "lr_scheduler_step_unit": "batch",
                "lr_scheduler_step_freq": 1,
                "warmup_steps": None,
                "warmup_unit": "batch",
                "warmup_percentage": None,
                "min_lr": 0.0,
                "reset_state": True,
                "exponential_config": {
                    "gamma": 0.9
                },
                "plateau_config": {
                    "metric": "model/train/all/loss",
                    "mode": "min",
                    "factor": 0.1,
                    "patience": 10,
                    "threshold": 0.0001,
                    "threshold_mode": "rel",
                    "cooldown": 0,
                    "eps": 1e-08,
                },
                "step_config": {
                    "step_size": 1,
                    "gamma": 0.1,
                    "last_epoch": -1
                },
                "multi_step_config": {
                    "milestones": [1000],
                    "gamma": 0.1,
                    "last_epoch": -1,
                },
                "cyclic_config": {
                    "base_lr": 0.001,
                    "base_momentum": 0.8,
                    "cycle_momentum": True,
                    "gamma": 1.0,
                    "last_epoch": -1,
                    "max_lr": 0.1,
                    "max_momentum": 0.9,
                    "mode": "triangular",
                    "scale_fn": None,
                    "scale_mode": "cycle",
                    "step_size_down": None,
                    "step_size_up": 2000,
                },
                "one_cycle_config": {
                    "anneal_strategy": "cos",
                    "base_momentum": 0.85,
                    "cycle_momentum": True,
                    "div_factor": 25,
                    "final_div_factor": 10000.0,
                    "last_epoch": -1,
                    "max_lr": 0.1,
                    "max_momentum": 0.95,
                    "pct_start": 0.3,
                },
                "cosine_annealing_config": {
                    "last_epoch": -1
                },
            },
            "task_scheduler_config": {
                "task_scheduler": "round_robin",
                "sequential_scheduler_config": {
                    "fillup": False
                },
                "round_robin_scheduler_config": {
                    "fillup": False
                },
                "mixed_scheduler_config": {
                    "fillup": False
                },
            },
        },
        "logging_config": {
            "counter_unit": "epoch",
            "evaluation_freq": 1,
            "writer_config": {
                "writer": "tensorboard",
                "verbose": True
            },
            "checkpointing": False,
            "checkpointer_config": {
                "checkpoint_path": None,
                "checkpoint_freq": 1,
                "checkpoint_metric": {
                    "model/train/all/loss": "min"
                },
                "checkpoint_task_metrics": None,
                "checkpoint_runway": 0,
                "checkpoint_all": True,
                "clear_intermediate_checkpoints": True,
                "clear_all_checkpoints": False,
            },
        },
    }

    # Test default and default args are the same
    dirpath = "temp_parse_args"
    Meta.reset()
    init(dirpath)

    parser = parse_args()
    args = parser.parse_args([])
    config1 = parse_args_to_config(args)
    config2 = Meta.config

    del config2["learner_config"]["global_evaluation_metric_dict"]
    del config2["learner_config"]["optimizer_config"]["parameters"]
    assert config1 == config2

    shutil.rmtree(dirpath)