def read_csv(filename = './train.csv'): phrase = [] emoji = [] with open (filename) as csvDataFile: csvReader = csv.reader(csvDataFile) print(csvReader) for row in csvReader: phrase.append(row[0]) emoji.append(row[1])
def read_csv(filename='data/emojify_data.csv'): with open(filename) as f: csvfile=csv.reader(f) phrases=[] emoji=[] for row in csvfile: phrases.append(row[0]) emoji.append(row[1]) X=np.asarray(phrases) Y=np.asarray(emoji,dtype=int) return X,Y
def read_csv(filename): tweet, emoji = [], [] with open(filename) as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: tweet.append(row[0]) emoji.append(row[1]) return np.asarray(tweet), np.asarray(emoji, dtype=int)
def read_csv(filename): #read dataset files phrase = [] emoji = [] with open (filename) as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: phrase.append(row[0]) emoji.append(row[1]) X = np.asarray(phrase) Y = np.asarray(emoji, dtype=int) return X, Y
def read_csv(filename = 'data/emojify_data.csv'): phrase = [] emoji = [] with open (filename, encoding='utf-8') as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: phrase.append(row[0]) emoji.append(row[1]) X = np.asarray(phrase) Y = np.asarray(emoji, dtype=int) return X, Y
def read_csv(filename='F:\\deeplearning-data\\word2vec-data\\train_emoji.csv'): phrase = [] emoji = [] with open(filename) as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: phrase.append(row[0]) emoji.append(row[1]) X = np.asarray(phrase) Y = np.asarray(emoji, dtype=int) return X, Y
def read_csv(filename = 'data/emojify_data.csv'): phrase = [] emoji = [] with open (filename) as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: phrase.append(row[0]) emoji.append(row[1]) X = np.asarray(phrase) Y = np.asarray(emoji, dtype=int) return X, Y
def load_csv(filename): sentence = [] emoji = [] # open the csv and separate the text sentences and emoji with open(filename) as csv_file: csv_data = csv.reader(csv_file) for row in csv_data: sentence.append(row[0]) emoji.append(row[1]) X = np.asarray(sentence) Y = np.asarray(emoji, dtype=int) return X, Y
def read_csv(filename='data/emojify_data.csv'): phrase = [] emoji = [] with open(settings.BASE_DIR + settings.STATIC_URL + filename) as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: phrase.append(row[0]) emoji.append(row[1]) X = np.asarray(phrase) Y = np.asarray(emoji, dtype=int) return X, Y
def read_csv(filename='data/emojify_data.csv'): phrase = [] emoji = [] sdvgwuygv sdbxuwydcy csidcgwuyg cbwu with open(filename) as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: phrase.append(row[0]) emoji.append(row[1]) X = np.asarray(phrase) Y = np.asarray(emoji, dtype=int) return X, Y
def read_csv_ht(filename = 'data/emojify_data.csv', rte = False): phrase_h = [] phrase_t = [] emoji = [] with open (filename, encoding='utf8') as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: # print(". ".join(row[0:1])) # print(row[2]) phrase_h.append(row[0]) phrase_t.append(row[1]) emoji.append(row[2]) # print(phrase) # print(emoji) X_h = np.asarray(phrase_h) X_t = np.asarray(phrase_t) Y = np.asarray(emoji, dtype=int) return X_h, X_t, Y
def read_csv(filename='data/SD_dataset_FINAL.csv'): phrase = [] emoji = [] with open(filename) as csvDataFile: csvReader = csv.reader(csvDataFile) special_char_pattern = re.compile(r'([{.(-)!}])') for row in csvReader: num_col = len(row) s = "" for c_n in range(num_col - 1): s += row[c_n] s = re.sub(',', ':', s) s = contractions.fix(s) s = special_char_pattern.sub(" \\1 ", s) s = remove_special_characters(s, remove_digits=True) phrase.append(s) emoji.append(row[num_col - 1]) X = np.asarray(phrase) Y = np.asarray(emoji, dtype=int) return X, Y
def read_csv(filename = 'data/emojify_data.csv', rte = False): phrase = [] emoji = [] with open (filename, encoding='utf8') as csvDataFile: csvReader = csv.reader(csvDataFile) for row in csvReader: if rte: # print(". ".join(row[0:1])) # print(row[2]) phrase.append(" ".join(row[0:2])) emoji.append(row[2]) else: phrase.append(row[0]) emoji.append(row[1]) # print(phrase) # print(emoji) X = np.asarray(phrase) Y = np.asarray(emoji, dtype=int) return X, Y
#use dictionary to store the emoji #content include(text,city)pair content = collection.find({},{"text":1,"place.full_name":1, "_id":0}) #for extra stateEmojiCount = {} for words in content: # emoji list emoji = [] for t in words["text"]: if t in UNICODE_EMOJI: emoji.append(t); if len(words) == 2: address = words['place']['full_name'].split(", ") if len(address)== 2: city = address[0] state = address[1] else: state = '' if len(state) == 2: # for extra point if state in stateEmojiCount: stateEmojiCount[state] += emoji else:
stateTweets = {} #count the tweet used in city in California cityCount = {} # #for extra # stateEmojiCount = {} for words in content: # print(words) # emoji list emoji = [] for t in words["text"]: if t in UNICODE_EMOJI: emoji.append(t) for symbol in emoji: if symbol in emojiCount: emojiCount[symbol] += 1 else: emojiCount[symbol] = 1 if len(words) == 2: address = words['place']['full_name'].split(", ") if len(address) == 2: city = address[0] # print(address[0]) state = address[1] # print(address[1]) else: