def identity(shape, scale=1): if len(shape) != 2 or shape[0] != shape[1]: raise Exception( "Identity matrix initialization can only be used for 2D square matrices" ) else: return sharedX(scale * np.identity(shape[0]))
def orthogonal(shape, scale=1.1): ''' From Lasagne ''' flat_shape = (shape[0], np.prod(shape[1:])) a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) # pick the one with the correct shape q = u if u.shape == flat_shape else v q = q.reshape(shape) return sharedX(scale * q[:shape[0], :shape[1]])
def normal(shape, scale=0.02): return sharedX(np.random.randn(*shape) * scale)
def uniform(shape, scale=0.1): return sharedX(np.random.uniform(low=-scale, high=scale, size=shape))