def validate(epoch): model.eval() top1 = AverageMeter() top5 = AverageMeter() global best_pred, acclist_train, acclist_val is_best = False for batch_idx, (data, target) in enumerate(val_loader): data, target = data.cuda(args.gpu), target.cuda(args.gpu) with torch.no_grad(): output = model(data) acc1, acc5 = accuracy(output, target, topk=(1, 5)) top1.update(acc1[0], data.size(0)) top5.update(acc5[0], data.size(0)) # sum all sum1, cnt1, sum5, cnt5 = torch_dist_sum(args.gpu, top1.sum, top1.count, top5.sum, top5.count) if args.eval: if args.gpu == 0: top1_acc = sum(sum1) / sum(cnt1) top5_acc = sum(sum5) / sum(cnt5) print('Validation: Top1: %.3f | Top5: %.3f' % (top1_acc, top5_acc)) return if args.gpu == 0: top1_acc = sum(sum1) / sum(cnt1) top5_acc = sum(sum5) / sum(cnt5) print('Validation: Top1: %.3f | Top5: %.3f' % (top1_acc, top5_acc)) # save checkpoint acclist_val += [top1_acc] if top1_acc > best_pred: best_pred = top1_acc is_best = True state_dict = { 'epoch': epoch, 'state_dict': model.module.state_dict(), 'optimizer': optimizer.state_dict(), 'best_pred': best_pred, 'acclist_train': acclist_train, 'acclist_val': acclist_val, } if args.amp: state_dict['amp'] = amp.state_dict() encoding.utils.save_checkpoint(state_dict, args=args, is_best=is_best)
def validation(epoch): # Fast test during the training using single-crop only global best_pred is_best = False model.eval() metric.reset() for i, (image, target) in enumerate(valloader): with torch.no_grad(): pred = model(image)[0] target = target.cuda(args.gpu) metric.update(target, pred) if i % 100 == 0: all_metircs = metric.get_all() all_metircs = utils.torch_dist_sum(args.gpu, *all_metircs) pixAcc, mIoU = utils.get_pixacc_miou(*all_metircs) if args.gpu == 0: print('pixAcc: %.3f, mIoU: %.3f' % (pixAcc, mIoU)) all_metircs = metric.get_all() all_metircs = utils.torch_dist_sum(args.gpu, *all_metircs) pixAcc, mIoU = utils.get_pixacc_miou(*all_metircs) if args.gpu == 0: print('pixAcc: %.3f, mIoU: %.3f' % (pixAcc, mIoU)) if args.eval: return new_pred = (pixAcc + mIoU)/2 if new_pred > best_pred: is_best = True best_pred = new_pred utils.save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.module.state_dict(), 'optimizer': optimizer.state_dict(), 'best_pred': best_pred, }, args, is_best)
def validation(epoch): # Fast test during the training using single-crop only global best_pred is_best = False model.eval() metric.reset() for i, (image, target) in enumerate(valloader): with torch.no_grad(): pred = model(image)[0] target = target.cuda(args.gpu) metric.update(target, pred) if i % 100 == 0: all_metircs = metric.get_all() all_metircs = utils.torch_dist_sum(args.gpu, *all_metircs) pixAcc, mIoU = utils.get_pixacc_miou(*all_metircs) if args.gpu == 0: print('pixAcc: %.3f, mIoU1: %.3f' % (pixAcc, mIoU)) all_metircs = metric.get_all() all_metircs = utils.torch_dist_sum(args.gpu, *all_metircs) pixAcc, mIoU = utils.get_pixacc_miou(*all_metircs) if args.gpu == 0: print('pixAcc: %.3f, mIoU2: %.3f' % (pixAcc, mIoU)) p_m.append((pixAcc, mIoU)) plt.plot(p_m) plt.xlabel('10 Epoch') plt.ylabel('pixAcc, mIoU') plt.title('pixAcc, mIoU') plt.grid() plt.legend(('pixAcc', 'mIoU')) plt.savefig('./loss_fig/pixAcc_mIoU.pdf') plt.savefig('./loss_fig/pixAcc_mIoU.svg') plt.close() if args.eval: return new_pred = (pixAcc + mIoU) / 2 new_preds.append(new_pred) plt.plot(new_preds) plt.xlabel('10 Epoch') plt.ylabel('new_predication') plt.title('new_predication') plt.grid() plt.savefig('./loss_fig/new_predication.pdf') plt.savefig('./loss_fig/new_predication.svg') plt.close() if new_pred > best_pred: is_best = True best_pred = new_pred utils.save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.module.state_dict(), 'optimizer': optimizer.state_dict(), 'best_pred': best_pred, }, args, is_best, filename='checkpoint_train_{}.pth.tar'.format(epoch + 1))