예제 #1
0
def get_date_strings(days_to_plot, daystep):
    """Calculate date and position for range
    input of yeardays
    """
    major_ticks_days = []
    major_ticks_labels = []
    cnt = 0
    cnt_daystep = 1

    for day in days_to_plot:
        str_date = str(date_prop.yearday_to_date(2015, day))
        str_date_short = str_date[5:]
        yearhour = cnt * 24

        if daystep == cnt_daystep:

            # Label
            major_ticks_labels.append(str_date_short)

            # Position
            major_ticks_days.append(yearhour)
            cnt_daystep = 1
            cnt += 1
        else:
            cnt_daystep += 1
            cnt += 1

    return major_ticks_days, major_ticks_labels
예제 #2
0
def test_yearday_to_date():
    """Testing
    """
    in_year = 2015
    in_month = 6
    in_day = 13
    in_yearday = 163
    expected = date(2015, in_month, in_day)

    # call function
    out_value = date_prop.yearday_to_date(in_year, in_yearday)

    assert out_value == expected
예제 #3
0
def get_date_strings(days_to_plot, daystep):
    """Calculate date and position for range input of yeardays

    Arguments
    ---------
    days_to_plot : list
        List with yeardays to plot
    daystep : int
        Intervall of days to assign label

    Return
    -------
    ticks_position : list
        Hourly ticks position
    major_ticks_labels : list
        Ticks labels
    """
    ticks_position, ticks_labels = [], []

    cnt = 0
    cnt_daystep = 1

    for day in days_to_plot:
        str_date = str(date_prop.yearday_to_date(2015, day))
        str_date_short = str_date[5:]

        # Because 0 posit in hour list is 01:00, substract minus one hour
        yearhour = (cnt * 24) - 1

        if daystep == cnt_daystep:
            ticks_labels.append(str_date_short)
            ticks_position.append(yearhour)

            cnt_daystep = 1
            cnt += 1
        else:
            cnt_daystep += 1
            cnt += 1

    return ticks_position, ticks_labels
def plot_radar_plots_average_peak_day(scenario_data,
                                      fueltype_to_model,
                                      fueltypes,
                                      year_to_plot,
                                      fig_name,
                                      base_yr=2015):
    """Compare averaged dh profile overall regions for peak day
    for future year and base year

    MAYBE: SO FAR ONLY FOR ONE SCENARIO
    """
    fueltype_int = fueltypes[fueltype_to_model]

    # ----------------
    # Create base year peak load profile
    # Aggregate load profiles of all regions
    # -----------------
    peak_winter_individ_radars_to_plot_dh = []
    trough_summer_individ_radars_to_plot_dh = []
    load_factor_fueltype_y_cy = []
    results_txt = []

    for scenario_cnt, scenario in enumerate(scenario_data):

        print("-------Scenario: '{}' '{}'".format(scenario, fueltype_to_model))

        # ------------------------
        # Future year load profile
        # ------------------------
        all_regs_fueltypes_yh_by = np.sum(
            scenario_data[scenario]['ed_fueltype_regs_yh'][base_yr], axis=1)
        all_regs_fueltypes_yh_cy = np.sum(
            scenario_data[scenario]['ed_fueltype_regs_yh'][year_to_plot],
            axis=1)

        # ---------------------------
        # Calculate load factors
        # ---------------------------
        peak_day_nr_by, by_max_h = enduse_func.get_peak_day_single_fueltype(
            all_regs_fueltypes_yh_by[fueltype_int])
        test_peak_day_by = enduse_func.get_peak_day_all_fueltypes(
            all_regs_fueltypes_yh_by)
        peak_day_nr_cy, cy_max_h = enduse_func.get_peak_day_single_fueltype(
            all_regs_fueltypes_yh_cy[fueltype_int])
        test_peak_day_cy = enduse_func.get_peak_day_all_fueltypes(
            all_regs_fueltypes_yh_cy)

        #peak_day_nr_cy = 32

        _ = all_regs_fueltypes_yh_cy[fueltype_int].reshape(365, 24)
        print(_[peak_day_nr_cy])
        print(np.max(_[peak_day_nr_cy]))
        print(cy_max_h)

        print("-----{}  {}".format(scenario, peak_day_nr_cy))
        print(_[peak_day_nr_cy])
        print("EGON")

        # Minimum trough day
        trough_day_nr_by, by_max_h_trough = enduse_func.get_trough_day_single_fueltype(
            all_regs_fueltypes_yh_by[fueltype_int])

        trough_day_nr_cy, cy_max_h_trough = enduse_func.get_trough_day_single_fueltype(
            all_regs_fueltypes_yh_cy[fueltype_int])

        scen_load_factor_fueltype_y_by = load_factors.calc_lf_y(
            all_regs_fueltypes_yh_by)
        load_factor_fueltype_y_by = round(
            scen_load_factor_fueltype_y_by[fueltype_int], fueltype_int)

        scen_load_factor_fueltype_y_cy = load_factors.calc_lf_y(
            all_regs_fueltypes_yh_cy)
        load_factor_fueltype_y_cy.append(
            round(scen_load_factor_fueltype_y_cy[fueltype_int], fueltype_int))

        # Add info on peak days #by2: {}
        results_txt.append(
            "p_day: {} by1: {} cy1: {}: cy2: {} trough_by: {} trough_cy: {}".
            format(
                peak_day_nr_cy,
                date_prop.yearday_to_date(2015, peak_day_nr_by),
                date_prop.yearday_to_date(2015, peak_day_nr_cy),
                #date_prop.yearday_to_date(2015, test_peak_day_by),
                date_prop.yearday_to_date(2015, test_peak_day_cy),
                date_prop.yearday_to_date(2015, trough_day_nr_by),
                date_prop.yearday_to_date(2015, trough_day_nr_cy)))

        # ------------------------
        # Restult calculations
        # ------------------------
        # Calculate share or space and water heating of total electrictiy demand in 2050
        enduses_to_agg = [
            'rs_space_heating', 'rs_water_heating', 'ss_space_heating',
            'ss_water_heating', 'is_space_heating'
        ]

        aggregated_enduse_fueltype_cy = np.zeros((8760))
        aggregated_enduse_fueltype_by = np.zeros((8760))

        for enduse in scenario_data[scenario]['results_enduse_every_year'][
                year_to_plot].keys():
            if enduse in enduses_to_agg:
                aggregated_enduse_fueltype_by += scenario_data[scenario][
                    'results_enduse_every_year'][2015][enduse][fueltype_int]
                aggregated_enduse_fueltype_cy += scenario_data[scenario][
                    'results_enduse_every_year'][year_to_plot][enduse][
                        fueltype_int]
        aggregated_enduse_fueltype_by_8760 = aggregated_enduse_fueltype_by.reshape(
            365, 24)
        aggregated_enduse_fueltype_cy_8760 = aggregated_enduse_fueltype_cy.reshape(
            365, 24)

        # Total demand of selected enduses
        selected_enduses_peak_by = round(
            np.max(aggregated_enduse_fueltype_by_8760[peak_day_nr_by]), 1)
        selected_enduses_peak_cy = round(
            np.max(aggregated_enduse_fueltype_cy_8760[peak_day_nr_cy]), 1)
        selected_enduses_min_by = round(
            np.max(aggregated_enduse_fueltype_by_8760[trough_day_nr_by]), 1)
        selected_enduses_min_cy = round(
            np.max(aggregated_enduse_fueltype_cy_8760[trough_day_nr_cy]), 1)

        # Calculate change in peak
        all_regs_fueltypes_yh_by = all_regs_fueltypes_yh_by.reshape(
            all_regs_fueltypes_yh_by.shape[0], 365, 24)
        all_regs_fueltypes_yh_cy = all_regs_fueltypes_yh_cy.reshape(
            all_regs_fueltypes_yh_cy.shape[0], 365, 24)

        diff_max_h = round(((100 / by_max_h) * cy_max_h) - 100, 1)

        txt = "peak_h_by: {} peak_h_cy: {} winter_heating_by: {} winter_heating_cy: {} trough_by: {} trough_cy: {} summer_heating_by: {} summer_heating_cy: {} {}".format(
            round(by_max_h, 1), round(cy_max_h, 1), selected_enduses_peak_by,
            selected_enduses_peak_cy, round(by_max_h_trough, 1),
            round(cy_max_h_trough, 1), selected_enduses_min_by,
            selected_enduses_min_cy, scenario)

        results_txt.append(txt)
        results_txt.append("----------")
        #results_txt.append("trough:day: " + str(all_regs_fueltypes_yh_by[fueltype_int][trough_day_nr_by]))

        print("Calculation of diff in peak: {} {} {} {}".format(
            scenario, round(diff_max_h, 1), round(by_max_h, 1),
            round(cy_max_h, 1)))

        # ----------------------------------
        # Plot dh for peak day for base year
        # ----------------------------------
        if scenario_cnt == 0:
            peak_winter_individ_radars_to_plot_dh.append(
                list(all_regs_fueltypes_yh_by[fueltype_int][peak_day_nr_by]))
            trough_summer_individ_radars_to_plot_dh.append(
                list(all_regs_fueltypes_yh_by[fueltype_int][trough_day_nr_cy]))
        else:
            pass

        # Add current year maximum winter peak day
        peak_winter_individ_radars_to_plot_dh.append(
            list(all_regs_fueltypes_yh_cy[fueltype_int][peak_day_nr_cy]))

        # Add current year minimum summer trough day
        trough_summer_individ_radars_to_plot_dh.append(
            list(all_regs_fueltypes_yh_cy[fueltype_int][trough_day_nr_cy]))

    # --------------------------
    # Save model results to txt
    # --------------------------
    name_spider_plot_peak = os.path.join(
        fig_name, "spider_scenarios_{}.pdf".format(fueltype_to_model))

    write_data.write_list_to_txt(
        os.path.join(fig_name, name_spider_plot_peak[:-3] + "txt"),
        results_txt)

    name_spider_plot_trough = os.path.join(
        fig_name,
        "spider_scenarios_min_summer{}.pdf".format(fueltype_to_model))

    write_data.write_list_to_txt(
        os.path.join(fig_name, name_spider_plot_trough[:-3] + "txt"),
        results_txt)

    # --------------------------
    # Plot figure
    # --------------------------

    # PEAK WINTER DAY PLOTS
    plot_radar_plot_multiple_lines(peak_winter_individ_radars_to_plot_dh,
                                   name_spider_plot_peak,
                                   plot_steps=50,
                                   scenario_names=list(scenario_data.keys()),
                                   plotshow=False,
                                   lf_y_by=[],
                                   lf_y_cy=[],
                                   list_diff_max_h=results_txt)

    # TROUGH Summer DAY PLOTS
    plot_radar_plot_multiple_lines(trough_summer_individ_radars_to_plot_dh,
                                   name_spider_plot_trough,
                                   plot_steps=50,
                                   scenario_names=list(scenario_data.keys()),
                                   plotshow=False,
                                   lf_y_by=[],
                                   lf_y_cy=[],
                                   list_diff_max_h=results_txt)
예제 #5
0
    def __init__(self,
                 lookup_enduses=None,
                 lookup_sector_enduses=None,
                 base_yr=None,
                 weather_by=None,
                 simulation_end_yr=None,
                 curr_yr=None,
                 sim_yrs=None,
                 paths=None,
                 enduses=None,
                 sectors=None,
                 reg_nrs=None):
        """Constructor
        """
        self.lookup_enduses = lookup_enduses
        self.lookup_sector_enduses = lookup_sector_enduses

        self.submodels_names = lookup_tables.basic_lookups()['submodels_names']
        self.nr_of_submodels = len(self.submodels_names)
        self.fueltypes = lookup_tables.basic_lookups()['fueltypes']
        self.fueltypes_nr = lookup_tables.basic_lookups()['fueltypes_nr']

        self.base_yr = base_yr
        self.weather_by = weather_by
        self.reg_nrs = reg_nrs
        self.simulation_end_yr = simulation_end_yr
        self.curr_yr = curr_yr
        self.sim_yrs = sim_yrs

        # ============================================================
        # Spatially modelled variables
        #
        # If spatial explicit diffusion is modelled, all parameters
        # or technologies having a spatial explicit diffusion need
        # to be defined.
        # ============================================================
        self.spatial_explicit_diffusion = 0  #0: False, 1: True

        # Define all variables which are affected by regional diffusion
        self.spatially_modelled_vars = []  # ['smart_meter_p']

        # Define technologies which are affected by spatial explicit diffusion
        self.techs_affected_spatial_f = ['heat_pumps_electricity']

        # Max penetration speed
        self.speed_con_max = 1  #1.5 # 1: uniform distribution >1: regional differences

        # ============================================================
        # Model calibration factors
        # ============================================================
        #
        #   These calibration factors are used to match the modelled
        #   electrictiy demand better with the validation data.
        #
        #   Weekend effects are used to distribut energy demands
        #   between working and weekend days. With help of these
        #   factors, the demand on weekends and holidays can be
        #   be lowered compared to working days.
        #   This factor can be applied either directly to an enduse
        #   or to the hdd or cdd calculations (to correct cooling
        #   or heating demand)
        #
        #       f_ss_cooling_weekend : float
        #           Weekend effect for cooling enduses
        #       f_ss_weekend : float
        #           WWeekend effect for service submodel enduses
        #       f_is_weekend : float
        #           Weekend effect for industry submodel enduses
        #       f_mixed_floorarea : float
        #           Share of floor_area which is assigned to either
        #           residential or non_residential floor area
        # ------------------------------------------------------------
        self.f_ss_cooling_weekend = 0.45  # Temporal calibration factor
        self.f_ss_weekend = 0.8  # Temporal calibration factor
        self.f_is_weekend = 0.45  # Temporal calibration factor

        # ============================================================
        #   Modelled day related factors
        # ============================================================
        #   model_yeardays_date : dict
        #     Contains for the base year for each days
        #     the information wheter this is a working or holiday
        # ------------------------------------------------------------
        self.model_yeardays = list(range(365))

        # Calculate dates
        self.model_yeardays_date = []
        for yearday in self.model_yeardays:
            self.model_yeardays_date.append(
                date_prop.yearday_to_date(base_yr, yearday))

        # ============================================================
        #   Dwelling stock related assumptions
        # ============================================================
        #
        #   Assumptions to generate a virtual dwelling stock
        #
        #       assump_diff_floorarea_pp : float
        #           Change in floor area per person (%, 1=100%)
        #       assump_diff_floorarea_pp_yr_until_changed : int
        #           Year until this change in floor area happens
        #       dwtype_distr_by : dict
        #           Housing Stock Distribution by Type
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_distr_fy : dict
        #           welling type distribution end year
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_floorarea_by : dict
        #           Floor area per dwelling type (Annex Table 3.1)
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_floorarea_fy : dict
        #           Floor area per dwelling type
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_age_distr : dict
        #           Floor area per dwelling type
        #               Source: Housing Energy Fact Sheet)
        #       yr_until_changed : int
        #           Year until change is realised
        #
        # https://www.gov.uk/government/statistics/english-housing-survey-2014-to-2015-housing-stock-report
        # ------------------------------------------------------------
        yr_until_changed_all_things = 2050

        self.dwtype_distr_by = {
            'semi_detached': 0.26,
            'terraced': 0.283,
            'flat': 0.203,
            'detached': 0.166,
            'bungalow': 0.088
        }

        self.dwtype_distr_fy = {
            'yr_until_changed': yr_until_changed_all_things,
            'semi_detached': 0.26,
            'terraced': 0.283,
            'flat': 0.203,
            'detached': 0.166,
            'bungalow': 0.088
        }

        self.dwtype_floorarea_by = {
            'semi_detached': 96,
            'terraced': 82.5,
            'flat': 61,
            'detached': 147,
            'bungalow': 77
        }

        self.dwtype_floorarea_fy = {
            'yr_until_changed': yr_until_changed_all_things,
            'semi_detached': 96,
            'terraced': 82.5,
            'flat': 61,
            'detached': 147,
            'bungalow': 77
        }

        # (Average builing age within age class, fraction)
        # The newest category of 2015 is added to implement change in refurbishing rate
        # For the base year, this is set to zero (if e.g. with future scenario set to 5%, then
        # proportionally to base year distribution number of houses are refurbished)
        self.dwtype_age_distr = {
            2015: {
                '1918': 0.21,
                '1941': 0.36,
                '1977.5': 0.3,
                '1996.5': 0.08,
                '2002': 0.05
            }
        }

        # ============================================================
        #  Scenario drivers
        # ============================================================
        #
        #   For every enduse the relevant factors which affect enduse
        #   consumption can be added in a list.
        #
        #   Note:   If e.g. floorarea and population are added, the
        #           effects will be overestimates (i.e. no multi-
        #           collinearity are considered).
        #
        #   scenario_drivers : dict
        #     Scenario drivers per enduse
        # ------------------------------------------------------------
        self.scenario_drivers = {

            # --Residential
            'rs_space_heating':
            ['floorarea',
             'hlc'],  # Do not use HDD or pop because otherweise double count
            'rs_water_heating': ['population'],
            'rs_lighting': ['population', 'floorarea'],
            'rs_cooking': ['population'],
            'rs_cold': ['population'],
            'rs_wet': ['population'],
            'rs_consumer_electronics': ['population', 'gva'],
            'rs_home_computing': ['population'],

            # --Service
            'ss_space_heating': ['floorarea'],
            'ss_water_heating': ['population'],
            'ss_lighting': ['floorarea'],
            'ss_catering': ['population'],
            'ss_ICT_equipment': ['population'],
            'ss_cooling_humidification': ['floorarea', 'population'],
            'ss_fans': ['floorarea', 'population'],
            'ss_small_power': ['population'],
            'ss_cooled_storage': ['population'],
            'ss_other_gas': ['population'],
            'ss_other_electricity': ['population'],

            # Industry
            'is_high_temp_process': ['gva'],
            'is_low_temp_process': ['gva'],
            'is_drying_separation': ['gva'],
            'is_motors': ['gva'],
            'is_compressed_air': ['gva'],
            'is_lighting': ['gva'],
            'is_space_heating': ['gva'],
            'is_other': ['gva'],
            'is_refrigeration': ['gva']
        }

        # ============================================================
        #   Cooling related assumptions
        # ============================================================
        #   assump_cooling_floorarea : int
        #       The percentage of cooled floor space in the base year
        #
        #   Literature
        #   ----------
        #   Abela, A. et al. (2016). Study on Energy Use by Air
        #   Conditioning. Bre, (June), 31. Retrieved from
        #   https://www.bre.co.uk/filelibrary/pdf/projects/aircon-energy-use/StudyOnEnergyUseByAirConditioningFinalReport.pdf
        # ------------------------------------------------------------

        # See Abela et al. (2016) & Carbon Trust. (2012). Air conditioning. Maximising comfort, minimising energy consumption
        self.cooled_ss_floorarea_by = 0.35

        # ============================================================
        # Smart meter related base year assumptions
        # ============================================================
        #   smart_meter_p_by : int
        #       The percentage of households with smart meters in by
        # ------------------------------------------------------------
        self.smart_meter_assump = {}

        # Currently in 2017 8.6 mio smart meter installed of 27.2 mio households --> 31.6%
        # https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/671930/Smart_Meters_2017_update.pdf)
        # In 2015, 5.8 % percent of all househods had one: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/533060/2016_Q1_Smart_Meters_Report.pdf
        self.smart_meter_assump['smart_meter_p_by'] = 0.05

        # Long term smart meter induced general savings, purley as
        # a result of having a smart meter (e.g. 0.03 --> 3% savings)
        # DECC 2015: Smart Metering Early Learning Project: Synthesis report
        # https://www.gov.uk/government/publications/smart-metering-early-learning-project-and-small-scale-behaviour-trials
        # Reasonable assumption is between 0.03 and 0.01 (DECC 2015)
        self.smart_meter_assump['savings_smart_meter'] = {

            # Residential
            'rs_cold': 0.03,
            'rs_cooking': 0.03,
            'rs_lighting': 0.03,
            'rs_wet': 0.03,
            'rs_consumer_electronics': 0.03,
            'rs_home_computing': 0.03,
            'rs_space_heating': 0.03,
            'rs_water_heating': 0.03,

            # Service
            'ss_space_heating': 0.03,
            'ss_water_heating': 0.03,
            'ss_cooling_humidification': 0.03,
            'ss_fans': 0.03,
            'ss_lighting': 0.03,
            'ss_catering': 0.03,
            'ss_small_power': 0.03,
            'ss_ICT_equipment': 0.03,
            'ss_cooled_storage': 0.03,
            'ss_other_gas': 0.03,
            'ss_other_electricity': 0.03,

            # Industry submodule
            'is_high_temp_process': 0,
            'is_low_temp_process': 0,
            'is_drying_separation': 0,
            'is_motors': 0,
            'is_compressed_air': 0,
            'is_lighting': 0,
            'is_space_heating': 0,
            'is_other': 0,
            'is_refrigeration': 0
        }

        # ============================================================
        # Base temperature assumptions
        # ============================================================
        #
        #   Parameters related to smart metering
        #
        #   rs_t_heating : int
        #       Residential submodel base temp of heating of base year
        #   rs_t_cooling_by : int
        #       Residential submodel base temp of cooling of base year
        #   ...
        #
        #   Note
        #   ----
        #   Because demand for cooling cannot directly be linked to
        #   calculated cdd, the paramters 'ss_t_base_cooling' is used
        #   as a calibration factor. By artifiallcy lowering this
        #   parameter, the energy demand assignement over the days
        #   in a year is improved.
        # ------------------------------------------------------------
        t_bases = {
            'rs_t_heating': 15.5,
            'ss_t_heating': 15.5,
            'ss_t_cooling': 5,
            'is_t_heating': 15.5
        }

        self.t_bases = DummyClass(t_bases)

        # ============================================================
        # Enduses lists affed by hdd/cdd
        # ============================================================
        #
        #   These lists show for which enduses temperature related
        #   calculations are performed.
        #
        #   enduse_space_heating : list
        #       All enduses for which hdd are used for yd calculations
        #   ss_enduse_space_cooling : list
        #       All service submodel enduses for which cdd are used for
        #       yd calculations
        # ------------------------------------------------------------
        self.enduse_space_heating = [
            'rs_space_heating', 'ss_space_heating', 'is_space_heating'
        ]

        self.ss_enduse_space_cooling = ['ss_cooling_humidification']

        # ============================================================
        # Industry related
        #
        # High temperature processing (high_temp_ process) dominates
        # energy consumption in the iron and steel
        #
        # ---- Steel production - Enduse: is_high_temp_process, Sector: basic_metals
        # With industry service switch, the future shares of 'is_temp_high_process'
        # in sector 'basic_metals' can be set for 'basic_oxygen_furnace',
        # 'electric_arc_furnace', and 'SNG_furnace' can be specified
        #
        # ---- Cement production - Enduse: is_high_temp_process, Sector: non_metallic_mineral_products
        # Dry kilns, semidry kilns can be set
        # ============================================================

        # Share of cold rolling in steel manufacturing
        self.p_cold_rolling_steel_by = 0.2  # Estimated based on https://aceroplatea.es/docs/EuropeanSteelFigures_2015.pdf
        self.eff_cold_rolling_process = 1.8  # 80% more efficient than hot rolling Fruehan et al. (2002)
        self.eff_hot_rolling_process = 1.0  # 100% assumed efficiency

        # ============================================================
        # Assumption related to heat pump technologies
        # ============================================================
        #
        #   Assumptions related to technologies
        #
        #   gshp_fraction : list
        #       Fraction of installed gshp_fraction heat pumps in base year
        #       ASHP = 1 - gshp_fraction
        # ------------------------------------------------------------
        self.gshp_fraction = 0.1

        # Load defined technologies
        self.technologies, self.tech_list = read_data.read_technologies(
            paths['path_technologies'])

        self.installed_heat_pump_by = tech_related.generate_ashp_gshp_split(
            self.gshp_fraction)

        # Add heat pumps to technologies
        self.technologies, self.tech_list[
            'heating_non_const'], self.heat_pumps = tech_related.generate_heat_pump_from_split(
                self.technologies, self.installed_heat_pump_by, self.fueltypes)

        # ============================================================
        # Fuel Stock Definition
        # Provide for every fueltype of an enduse the share of fuel
        # which is used by technologies in the base year
        # ============================================================$
        fuel_tech_p_by = fuel_shares.assign_by_fuel_tech_p(
            enduses, sectors, self.fueltypes, self.fueltypes_nr)

        # ========================================
        # Get technologies of an enduse and sector
        # ========================================
        self.specified_tech_enduse_by = helpers.get_def_techs(fuel_tech_p_by)

        _specified_tech_enduse_by = helpers.add_undef_techs(
            self.heat_pumps, self.specified_tech_enduse_by,
            self.enduse_space_heating)
        self.specified_tech_enduse_by = _specified_tech_enduse_by

        # ========================================
        # General other info
        # ========================================
        self.seasons = date_prop.get_season(year_to_model=base_yr)
        self.model_yeardays_daytype, self.yeardays_month, self.yeardays_month_days = date_prop.get_yeardays_daytype(
            year_to_model=base_yr)

        # ========================================
        # Helper functions
        # ========================================
        self.fuel_tech_p_by, self.specified_tech_enduse_by, self.technologies = tech_related.insert_placholder_techs(
            self.technologies, fuel_tech_p_by, self.specified_tech_enduse_by)

        # ========================================
        # Calculations with assumptions
        # ========================================
        self.cdd_weekend_cfactors = hdd_cdd.calc_weekend_corr_f(
            self.model_yeardays_daytype, self.f_ss_cooling_weekend)

        self.ss_weekend_f = hdd_cdd.calc_weekend_corr_f(
            self.model_yeardays_daytype, self.f_ss_weekend)

        self.is_weekend_f = hdd_cdd.calc_weekend_corr_f(
            self.model_yeardays_daytype, self.f_is_weekend)

        # ========================================
        # Testing
        # ========================================
        testing_functions.testing_fuel_tech_shares(self.fuel_tech_p_by)

        testing_functions.testing_tech_defined(self.technologies,
                                               self.specified_tech_enduse_by)
예제 #6
0
def compare_peak(name_fig, path_result, real_elec_2015_peak, modelled_peak_dh,
                 peak_day):
    """Compare peak electricity day with calculated peak energy demand

    Arguments
    ---------
    name_fig : str
        Name of figure
    local_paths : dict
        Paths
    real_elec_2015_peak : array
        Real data of peak day
    modelled_peak_dh : array
        Modelled peak day
    """
    logging.debug("...compare elec peak results")

    real_elec_peak = np.copy(real_elec_2015_peak)
    # -------------------------------
    # Compare values
    # -------------------------------
    fig = plt.figure(figsize=basic_plot_functions.cm2inch(8, 8))

    # smooth line
    x_smoothed, y_modelled_peak_dh_smoothed = basic_plot_functions.smooth_data(
        range(24), modelled_peak_dh, num=500)

    plt.plot(x_smoothed,
             y_modelled_peak_dh_smoothed,
             color='blue',
             linestyle='--',
             linewidth=0.5,
             label='model')

    x_smoothed, real_elec_peak_smoothed = basic_plot_functions.smooth_data(
        range(24), real_elec_peak, num=500)

    plt.plot(x_smoothed,
             real_elec_peak_smoothed,
             color='black',
             linestyle='-',
             linewidth=0.5,
             label='validation')

    #raise Exception
    # Calculate hourly differences in %
    diff_p_h = np.round((100 / real_elec_peak) * modelled_peak_dh, 1)

    # Calculate maximum difference
    max_h_real = np.max(real_elec_peak)
    max_h_modelled = np.max(modelled_peak_dh)

    max_h_diff = round((100 / max_h_real) * max_h_modelled, 2)
    max_h_diff_gwh = round((abs(100 - max_h_diff) / 100) * max_h_real, 2)

    # Y-axis ticks
    plt.xlim(0, 23)
    plt.yticks(range(0, 60, 10))

    # because position 0 in list is 01:00, the labelling starts with 1
    plt.xticks([0, 5, 11, 17, 23], [1, 6, 12, 18, 24])  #ticks, labels

    plt.legend(frameon=False)

    # Labelling
    date_yearday = date_prop.yearday_to_date(2015, peak_day)
    plt.title("peak comparison {}".format(date_yearday))

    plt.xlabel("h (max {} ({} GWH)".format(max_h_diff, max_h_diff_gwh))
    plt.ylabel("uk electrictiy use [GW]")

    plt.text(
        5,  #position
        5,  #position
        diff_p_h,
        fontdict={
            'family': 'arial',
            'color': 'black',
            'weight': 'normal',
            'size': 4
        })

    # Tight layout
    plt.tight_layout()
    plt.margins(x=0)

    # Save fig
    plt.savefig(os.path.join(path_result, name_fig))
    plt.close()
예제 #7
0
    def __init__(self,
                 base_yr=None,
                 curr_yr=None,
                 simulated_yrs=None,
                 paths=None,
                 enduses=None,
                 sectors=None,
                 fueltypes=None,
                 fueltypes_nr=None):

        yr_until_changed_all_things = 2050

        # Simulation parameters
        self.base_yr = base_yr
        self.curr_yr = curr_yr
        self.simulated_yrs = simulated_yrs

        # ============================================================
        # Spatially modelled variables
        # ============================================================
        # Define all variables which are affected by regional diffusion
        self.spatially_modelled_vars = ['smart_meter_improvement_p']

        # Define technologies which are affected by spatial explicit diffusion
        self.techs_affected_spatial_f = ['heat_pumps_electricity']

        # ============================================================
        # Model calibration factors
        # ============================================================
        #
        #   These calibration factors are used to match the modelled
        #   electrictiy demand better with the validation data.
        #
        #   Weekend effects are used to distribut energy demands
        #   between working and weekend days. With help of these
        #   factors, the demand on weekends and holidays can be
        #   be lowered compared to working days.
        #   This factor can be applied either directly to an enduse
        #   or to the hdd or cdd calculations (to correct cooling
        #   or heating demand)
        #
        #       f_ss_cooling_weekend : float
        #           Weekend effect for cooling enduses
        #       f_ss_weekend : float
        #           WWeekend effect for service submodel enduses
        #       f_is_weekend : float
        #           Weekend effect for industry submodel enduses
        #       f_mixed_floorarea : float
        #           Share of floor_area which is assigned to either
        #           residential or non_residential floor area
        # ------------------------------------------------------------

        # Temporal calibration factors
        self.f_ss_cooling_weekend = 0.45  # 0.55
        self.f_ss_weekend = 0.75  # 0.7
        self.f_is_weekend = 0.45  # 0.4

        # Spatial calibration factor
        self.f_mixed_floorarea = 0.5  # 0.5

        # ============================================================
        #   Modelled day related factors
        # ============================================================
        #
        #       model_yeardays_nrs : int
        #           Number of modelled yeardays (default=365)
        #       model_yearhours_nrs : int
        #           Number of modelled yearhours (default=8760)
        #        model_yeardays_date : dict
        #           Contains for the base year for each days
        #           the information wheter this is a working or holiday
        # ------------------------------------------------------------
        self.model_yeardays = list(range(365))

        # Calculate dates
        self.model_yeardays_date = []
        for yearday in self.model_yeardays:
            self.model_yeardays_date.append(
                date_prop.yearday_to_date(base_yr, yearday))

        self.model_yeardays_nrs = len(self.model_yeardays)
        self.model_yearhours_nrs = len(self.model_yeardays) * 24

        # ============================================================
        #   Dwelling stock related assumptions
        # ============================================================
        #
        #   Assumptions to generate a virtual dwelling stock
        #
        #       assump_diff_floorarea_pp : float
        #           Change in floor area per person (%, 1=100%)
        #       assump_diff_floorarea_pp_yr_until_changed : int
        #           Year until this change in floor area happens
        #       dwtype_distr_by : dict
        #           Housing Stock Distribution by Type
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_distr_fy : dict
        #           welling type distribution end year
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_floorarea_by : dict
        #           Floor area per dwelling type (Annex Table 3.1)
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_floorarea_fy : dict
        #           Floor area per dwelling type
        #               Source: UK Housing Energy Fact File, Table 4c
        #       dwtype_age_distr : dict
        #           Floor area per dwelling type
        #               Source: Housing Energy Fact Sheet)
        #       yr_until_changed : int
        #           Year until change is realised
        #
        # https://www.gov.uk/government/statistics/english-housing-survey-2014-to-2015-housing-stock-report
        # ------------------------------------------------------------
        self.assump_diff_floorarea_pp = 1.0

        self.assump_diff_floorarea_pp_yr_until_changed = yr_until_changed_all_things

        self.dwtype_distr_by = {
            'semi_detached': 0.26,
            'terraced': 0.283,
            'flat': 0.203,
            'detached': 0.166,
            'bungalow': 0.088
        }

        self.dwtype_distr_fy = {
            'yr_until_changed': yr_until_changed_all_things,
            'semi_detached': 0.26,
            'terraced': 0.283,
            'flat': 0.203,
            'detached': 0.166,
            'bungalow': 0.088
        }

        self.dwtype_floorarea_by = {
            'semi_detached': 96,
            'terraced': 82.5,
            'flat': 61,
            'detached': 147,
            'bungalow': 77
        }

        self.dwtype_floorarea_fy = {
            'yr_until_changed': yr_until_changed_all_things,
            'semi_detached': 96,
            'terraced': 82.5,
            'flat': 61,
            'detached': 147,
            'bungalow': 77
        }

        # (Average builing age within age class, fraction)
        # The newest category of 2015 is added to implement change in refurbishing rate
        # For the base year, this is set to zero (if e.g. with future scenario set to 5%, then
        # proportionally to base year distribution number of houses are refurbished)
        self.dwtype_age_distr = {
            2015: {
                '1918': 0.21,
                '1941': 0.36,
                '1977.5': 0.3,
                '1996.5': 0.08,
                '2002': 0.05
            }
        }

        # ============================================================
        #   Scenario drivers
        # ============================================================
        #
        #   For every enduse the relevant factors which affect enduse
        #   consumption can be added in a list.
        #
        #   Note:   If e.g. floorarea and population are added, the
        #           effects will be overestimates (i.e. no multi-
        #           collinearity are considered).
        #
        #       scenario_drivers : dict
        #           Scenario drivers per enduse
        # ------------------------------------------------------------
        self.scenario_drivers = {}

        # --Residential SubModel
        self.scenario_drivers['rs_submodule'] = {
            'rs_space_heating':
            ['floorarea',
             'hlc'],  # Do not use HDD or pop because otherweise double count
            'rs_water_heating': ['population'],
            'rs_lighting': ['population', 'floorarea'],
            'rs_cooking': ['population'],
            'rs_cold': ['population'],
            'rs_wet': ['population'],
            'rs_consumer_electronics':
            ['population'
             ],  #GVA TODO. As soon as GVA is avaiable, drive it with GVA
            'rs_home_computing': ['population']
        }  #GVA

        # --Service Submodel (Table 5.5a)
        self.scenario_drivers['ss_submodule'] = {
            'ss_space_heating': ['floorarea'],
            'ss_water_heating': ['population'],
            'ss_lighting': ['floorarea'],
            'ss_catering': ['population'],
            'ss_ICT_equipment': ['population'],
            'ss_cooling_humidification': ['floorarea', 'population'],
            'ss_fans': ['floorarea', 'population'],
            'ss_small_power': ['population'],
            'ss_cooled_storage': ['population'],
            'ss_other_gas': ['population'],
            'ss_other_electricity': ['population']
        }

        # --Industry Submodel
        self.scenario_drivers['is_submodule'] = {
            'is_high_temp_process': ['gva'],
            'is_low_temp_process': ['gva'],
            'is_drying_separation': ['gva'],
            'is_motors': ['gva'],
            'is_compressed_air': ['gva'],
            'is_lighting': ['gva'],
            'is_space_heating': ['gva'],
            'is_other': ['gva'],
            'is_refrigeration': ['gva']
        }

        # ============================================================
        #   Cooling related assumptions
        # ============================================================
        #
        #   Parameters related to cooling enduses are defined here.
        #
        #   assump_cooling_floorarea : int
        #       The percentage of cooled floor space in the base year
        #
        #   Literature
        #   ----------
        #   Abela, A. et al. (2016). Study on Energy Use by Air
        #   Conditioning. Bre, (June), 31. Retrieved from
        #   https://www.bre.co.uk/filelibrary/pdf/projects/aircon-energy-use
        #   /StudyOnEnergyUseByAirConditioningFinalReport.pdf
        # ------------------------------------------------------------

        # See Abela et al. (2016)
        # Carbon Trust. (2012). Air conditioning. Maximising comfort, minimising energy consumption
        self.cooled_ss_floorarea_by = 0.35

        # ============================================================
        # Smart meter related base year assumptions
        # ============================================================
        #
        #   Parameters related to smart metering
        #
        #   smart_meter_p_by : int
        #       The percentage of households with smart meters in by
        #   smart_meter_diff_params : dict
        #       Sigmoid diffusion parameter of smater meters
        # ------------------------------------------------------------
        self.smart_meter_assump = {}
        self.smart_meter_assump['smart_meter_p_by'] = 0.1
        self.smart_meter_assump['smart_meter_diff_params'] = {
            'sig_midpoint': 0,
            'sig_steepness': 1
        }

        # ============================================================
        # Base temperature assumptions
        # ============================================================
        #
        #   Parameters related to smart metering
        #
        #   rs_t_heating_by : int
        #       Residential submodel base temp of heating of base year
        #   rs_t_cooling_by : int
        #       Residential submodel base temp of cooling of base year
        #   base_temp_diff_params : dict
        #       Sigmoid temperature diffusion parameters
        #   ...
        #
        #   Note
        #   ----
        #   Because demand for cooling cannot directly be linked to
        #   calculated cdd, the paramters 'ss_t_cooling_by' is used
        #   as a calibration factor. By artifiallcy lowering this
        #   parameter, the energy demand assignement over the days
        #   in a year is improved.
        # ------------------------------------------------------------
        t_bases = {}
        t_bases['rs_t_heating_by'] = 15.5  #
        #t_bases['rs_t_cooling_by'] = Not implemented

        t_bases['ss_t_heating_by'] = 15.5  #
        t_bases['ss_t_cooling_by'] = 5  # Orig: 5

        t_bases['is_t_heating_by'] = 15.5  #
        #self.t_bases['is_t_cooling_by'] = Not implemented

        self.t_bases = DummyClass(t_bases)

        self.base_temp_diff_params = {
            'sig_midpoint': 0,
            'sig_steepness': 1,
            'yr_until_changed': yr_until_changed_all_things
        }

        # ============================================================
        # Enduses lists affed by hdd/cdd
        # ============================================================
        #
        #   These lists show for which enduses temperature related
        #   calculations are performed.
        #
        #   enduse_space_heating : list
        #       All enduses for which hdd are used for yd calculations
        #   enduse_rs_space_cooling : list
        #       All residential enduses for which cdd are used for
        #       yd calculations
        #   ss_enduse_space_cooling : list
        #       All service submodel enduses for which cdd are used for
        #       yd calculations
        # ------------------------------------------------------------
        self.enduse_space_heating = [
            'rs_space_heating', 'ss_space_heating', 'is_space_heating'
        ]

        self.enduse_rs_space_cooling = []
        self.ss_enduse_space_cooling = ['ss_cooling_humidification']

        # ============================================================
        # Industry submodel related parameters
        # ============================================================
        #
        #   Assumptions related to industrial enduses
        #
        #   Overal changes in industry related enduse can be changed
        #   in 'enduse_overall_change_enduses'
        #
        # ------------------------------------------------------------

        # --------------------------------------------
        # heating
        # --------------------------------------------
        # --> No scenario drivers but driven by switches

        # --------------------------------------------
        # lighting
        #
        # No individual technologies are defined. Only
        # overall efficiency increase can be implemented
        #--------------------------------------------

        # --------------------------------------------
        # high_temp_ process
        #
        #       High temperature processing dominates energy consumption in the iron and steel,
        #       non-ferrous metal, bricks, cement, glass and potteries industries. This includes
        #          - coke ovens
        #          - blast furnaces and other furnaces
        #          - kilns and
        #          - glass tanks.
        # High consumption in Chemicals, Non_metallic mineral products, paper, food_production
        # Fuel use ratio - electric arc furnace over blast furnace steel making in cement sector
        # BAT - iron & steel - continous/Ingot casting 	Sectoral share - continuous %
        # --------------------------------------------

        # Share of cold rolling in steel manufacturing
        # *****************
        self.p_cold_rolling_steel_by = 0.2  # Estimated  based on https://aceroplatea.es/docs/EuropeanSteelFigures_2015.pdf
        self.eff_cold_rolling_process = 1.8  # 80% more efficient than hot rolling Fruehan et al. (2002)
        self.eff_hot_rolling_process = 1.0  # 100% assumed efficiency

        # Steel production - Enduse: is_high_temp_process, Sector: basic_metals
        # *****************
        # With industry service switch, the future shares
        # in 'basic_oxygen_furnace', 'electric_arc_furnace', and 'SNG_furnace'
        # can be specified

        #scrap-based production: electric arc furnace
        #direct reduction process: natrual gas based, electric arc furnace
        #BF-BOF (blast furnace - basix oxgen furnace)
        #       Example service switch:
        #           is_high_temp_process,SNG_furnace,1.0,2050,basic_metals

        # Cement production - Enduse: is_high_temp_process, Sector: non_metallic_mineral_products
        # *****************
        # technologies: Dry kilns, semidry kilns

        # CHEMICALs - Enduse: is_high_temp_process, Sector: CHEMICALS
        # *****************
        # technologies: Dry & wet kilns

        # ----------------
        # Efficiency of motors
        # ----------------
        #is_motors_eff_change = 0

        # ----------------
        # Efficiency of others
        # ----------------
        #is_others_eff_change = 0

        # ----------------
        # Efficiency of others
        # ----------------
        #is_refrigeration_eff_change = 0

        # ----------------
        # Efficiency of is_compressed_air
        # ----------------
        #is_compressed_air_eff_change =

        # ----------------
        # Efficiency of is_drying_separation
        # ----------------
        #is_drying_separation_eff_change =

        # ----------------
        # Efficiency of is_low_temp_process
        # ----------------
        #is_low_temp_process_eff_change =

        # ============================================================
        # Assumption related to heat pump technologies
        # ============================================================
        #
        #   Assumptions related to technologies
        #
        #   gshp_fraction : list
        #       Fraction of installed gshp_fraction heat pumps in base year
        #       ASHP = 1 - gshp_fraction
        # ------------------------------------------------------------
        self.gshp_fraction = 0.1

        self.technologies, self.tech_list = read_data.read_technologies(
            paths['path_technologies'], fueltypes)

        self.installed_heat_pump_by = tech_related.generate_ashp_gshp_split(
            self.gshp_fraction)

        # Add heat pumps to technologies
        self.technologies, self.tech_list[
            'heating_non_const'], self.heat_pumps = tech_related.generate_heat_pump_from_split(
                self.technologies, self.installed_heat_pump_by, fueltypes)

        # Collect all heating technologies
        # TODO: MAYBE ADD IN TECH DOC ANOTHER LIST SPECIFYING ALL HEATING TECHs
        self.heating_technologies = get_all_heating_techs(self.tech_list)

        # ============================================================
        # Enduse diffusion paramters
        # ============================================================
        #
        #   Assumptions related to general diffusion
        #
        #   This parameters are used to specify e.g. diffusion of
        #   an enduse which is not specified by technologies
        #   or the diffusion of a policy of changing a parameter
        #   over time.
        # ------------------------------------------------------------
        self.enduse_overall_change = {}
        self.enduse_overall_change['other_enduse_mode_info'] = {
            'diff_method': 'linear',
            'sigmoid': {
                'sig_midpoint': 0,
                'sig_steepness': 1
            }
        }

        # ============================================================
        # Fuel Stock Definition
        # Provide for every fueltype of an enduse
        # the share of fuel which is used by technologies for thebase year
        # ============================================================
        self.rs_fuel_tech_p_by, self.ss_fuel_tech_p_by, self.is_fuel_tech_p_by = assumptions_fuel_shares.assign_by_fuel_tech_p(
            enduses, sectors, fueltypes, fueltypes_nr)

        # ========================================
        # Get technologies of an enduse
        # ========================================
        self.rs_specified_tech_enduse_by = helpers.get_def_techs(
            self.rs_fuel_tech_p_by, sector_crit=False)

        self.ss_specified_tech_enduse_by = helpers.get_def_techs(
            self.ss_fuel_tech_p_by, sector_crit=True)

        self.is_specified_tech_enduse_by = helpers.get_def_techs(
            self.is_fuel_tech_p_by, sector_crit=True)

        rs_specified_tech_enduse_by_new = helpers.add_undef_techs(
            self.heat_pumps, self.rs_specified_tech_enduse_by,
            'rs_space_heating')
        self.rs_specified_tech_enduse_by = rs_specified_tech_enduse_by_new

        ss_specified_tech_enduse_by_new = helpers.add_undef_techs(
            self.heat_pumps, self.ss_specified_tech_enduse_by,
            'ss_space_heating')
        self.ss_specified_tech_enduse_by = ss_specified_tech_enduse_by_new

        is_specified_tech_enduse_by_new = helpers.add_undef_techs(
            self.heat_pumps, self.is_specified_tech_enduse_by,
            'is_space_heating')
        self.is_specified_tech_enduse_by = is_specified_tech_enduse_by_new

        # ============================================================
        # Read in switches
        # ============================================================

        # Read in scenaric fuel switches
        self.rs_fuel_switches = read_data.read_fuel_switches(
            paths['rs_path_fuel_switches'], enduses, fueltypes,
            self.technologies)
        self.ss_fuel_switches = read_data.read_fuel_switches(
            paths['ss_path_fuel_switches'], enduses, fueltypes,
            self.technologies)
        self.is_fuel_switches = read_data.read_fuel_switches(
            paths['is_path_fuel_switches'], enduses, fueltypes,
            self.technologies)

        # Read in scenaric service switches
        self.rs_service_switches = read_data.service_switch(
            paths['rs_path_service_switch'], self.technologies)
        self.ss_service_switches = read_data.service_switch(
            paths['ss_path_service_switch'], self.technologies)
        self.is_service_switches = read_data.service_switch(
            paths['is_path_industry_switch'], self.technologies)

        # Read in scenaric capacity switches
        self.rs_capacity_switches = read_data.read_capacity_switch(
            paths['rs_path_capacity_installation'])
        self.ss_capacity_switches = read_data.read_capacity_switch(
            paths['ss_path_capacity_installation'])
        self.is_capacity_switches = read_data.read_capacity_switch(
            paths['is_path_capacity_installation'])

        # Testing
        self.crit_switch_happening = testing_functions.switch_testing(
            fuel_switches=[
                self.rs_fuel_switches, self.ss_fuel_switches,
                self.is_fuel_switches
            ],
            service_switches=[
                self.rs_service_switches, self.ss_service_switches,
                self.is_service_switches
            ],
            capacity_switches=[
                self.rs_capacity_switches, self.ss_capacity_switches,
                self.is_capacity_switches
            ])

        # ========================================
        # General other assumptions
        # ========================================
        self.seasons = date_prop.get_season(year_to_model=base_yr)

        self.model_yeardays_daytype, self.yeardays_month, self.yeardays_month_days = date_prop.get_model_yeardays_daytype(
            year_to_model=base_yr)

        # ========================================
        # Helper functions
        # ========================================
        self.rs_fuel_tech_p_by, self.rs_specified_tech_enduse_by, self.technologies = tech_related.insert_placholder_techs(
            self.technologies,
            self.rs_fuel_tech_p_by,
            self.rs_specified_tech_enduse_by,
            sector_crit=False)

        self.ss_fuel_tech_p_by, self.ss_specified_tech_enduse_by, self.technologies = tech_related.insert_placholder_techs(
            self.technologies,
            self.ss_fuel_tech_p_by,
            self.ss_specified_tech_enduse_by,
            sector_crit=True)

        self.is_fuel_tech_p_by, self.is_specified_tech_enduse_by, self.technologies = tech_related.insert_placholder_techs(
            self.technologies,
            self.is_fuel_tech_p_by,
            self.is_specified_tech_enduse_by,
            sector_crit=True)

        # ========================================
        # Calculations with assumptions
        # ========================================
        self.cdd_weekend_cfactors = hdd_cdd.calc_weekend_corr_f(
            self.model_yeardays_daytype, self.f_ss_cooling_weekend)

        self.ss_weekend_f = hdd_cdd.calc_weekend_corr_f(
            self.model_yeardays_daytype, self.f_ss_weekend)

        self.is_weekend_f = hdd_cdd.calc_weekend_corr_f(
            self.model_yeardays_daytype, self.f_is_weekend)

        # ========================================
        # Testing
        # ========================================
        testing_functions.testing_fuel_tech_shares(self.rs_fuel_tech_p_by)
        for enduse in self.ss_fuel_tech_p_by:
            testing_functions.testing_fuel_tech_shares(
                self.ss_fuel_tech_p_by[enduse])
        for enduse in self.is_fuel_tech_p_by:
            testing_functions.testing_fuel_tech_shares(
                self.is_fuel_tech_p_by[enduse])

        testing_functions.testing_tech_defined(
            self.technologies, self.rs_specified_tech_enduse_by)
        testing_functions.testing_tech_defined(
            self.technologies, self.ss_specified_tech_enduse_by)
        testing_functions.testing_tech_defined(
            self.technologies, self.is_specified_tech_enduse_by)