예제 #1
0
파일: ucc.py 프로젝트: keflavich/hyperspy
 def draw_colorbar(self):
     scatplot=self.scatplot
     cmap_renderer = scatplot.plots["my_plot"][0]
     selection = ColormappedSelectionOverlay(cmap_renderer, fade_alpha=0.35, 
                                             selection_type="range")
     cmap_renderer.overlays.append(selection)
     if self.thresh is not None:
         cmap_renderer.color_data.metadata['selections']=self.thresh
         cmap_renderer.color_data.metadata_changed={'selections':self.thresh}
     # Create the colorbar, handing in the appropriate range and colormap
     colormap=scatplot.color_mapper
     colorbar = ColorBar(index_mapper=LinearMapper(range=DataRange1D(low = 0.0,
                                    high = 1.0)),
                     orientation='v',
                     resizable='v',
                     width=30,
                     padding=20)
     colorbar_selection=RangeSelection(component=colorbar)
     colorbar.tools.append(colorbar_selection)
     ovr=colorbar.overlays.append(RangeSelectionOverlay(component=colorbar,
                                                border_color="white",
                                                alpha=0.8,
                                                fill_color="lightgray",
                                                metadata_name='selections'))
     #ipshell('colorbar, colorbar_selection and ovr available:')
     self.cbar_selection=colorbar_selection
     self.cmap_renderer=cmap_renderer
     colorbar.plot = cmap_renderer
     colorbar.padding_top = scatplot.padding_top
     colorbar.padding_bottom = scatplot.padding_bottom
     self.colorbar=colorbar
     return colorbar
예제 #2
0
 def _create_colorbar(self):
     cmap = self.plot.color_mapper
     self._colorbar = ColorBar(index_mapper=LinearMapper(range=cmap.range),
                               color_mapper=cmap,
                               orientation='v',
                               resizable='v',
                               width=30,
                               padding=30)
예제 #3
0
    def __init__(self, **kwargs):
        super(VariableMeshPannerView, self).__init__(**kwargs)
        # Create the plot
        self.add_trait("field", DelegatesTo("vm_plot"))

        plot = self.vm_plot.plot
        img_plot = self.vm_plot.img_plot

        if self.use_tools:
            plot.tools.append(PanTool(img_plot))
            zoom = ZoomTool(component=img_plot,
                            tool_mode="box",
                            always_on=False)
            plot.overlays.append(zoom)
            imgtool = ImageInspectorTool(img_plot)
            img_plot.tools.append(imgtool)
            overlay = ImageInspectorOverlay(component=img_plot,
                                            image_inspector=imgtool,
                                            bgcolor="white",
                                            border_visible=True)
            img_plot.overlays.append(overlay)

        image_value_range = DataRange1D(self.vm_plot.fid)
        cbar_index_mapper = LinearMapper(range=image_value_range)
        self.colorbar = ColorBar(index_mapper=cbar_index_mapper,
                                 plot=img_plot,
                                 padding_right=40,
                                 resizable='v',
                                 width=30)

        self.colorbar.tools.append(
            PanTool(self.colorbar, constrain_direction="y", constrain=True))
        zoom_overlay = ZoomTool(self.colorbar,
                                axis="index",
                                tool_mode="range",
                                always_on=True,
                                drag_button="right")
        self.colorbar.overlays.append(zoom_overlay)

        # create a range selection for the colorbar
        range_selection = RangeSelection(component=self.colorbar)
        self.colorbar.tools.append(range_selection)
        self.colorbar.overlays.append(
            RangeSelectionOverlay(component=self.colorbar,
                                  border_color="white",
                                  alpha=0.8,
                                  fill_color="lightgray"))

        # we also want to the range selection to inform the cmap plot of
        # the selection, so set that up as well
        range_selection.listeners.append(img_plot)

        self.full_container = HPlotContainer(padding=30)
        self.container = OverlayPlotContainer(padding=0)
        self.full_container.add(self.colorbar)
        self.full_container.add(self.container)
        self.container.add(self.vm_plot.plot)
예제 #4
0
파일: ucc.py 프로젝트: hongliliu/hyperspy
 def draw_colorbar(self):
     scatplot = self.scatplot
     cmap_renderer = scatplot.plots["my_plot"][0]
     selection = ColormappedSelectionOverlay(cmap_renderer,
                                             fade_alpha=0.35,
                                             selection_type="range")
     cmap_renderer.overlays.append(selection)
     if self.thresh is not None:
         cmap_renderer.color_data.metadata['selections'] = self.thresh
         cmap_renderer.color_data.metadata_changed = {
             'selections': self.thresh
         }
     # Create the colorbar, handing in the appropriate range and colormap
     colormap = scatplot.color_mapper
     colorbar = ColorBar(
         index_mapper=LinearMapper(range=DataRange1D(low=0.0, high=1.0)),
         orientation='v',
         resizable='v',
         width=30,
         padding=20)
     colorbar_selection = RangeSelection(component=colorbar)
     colorbar.tools.append(colorbar_selection)
     ovr = colorbar.overlays.append(
         RangeSelectionOverlay(component=colorbar,
                               border_color="white",
                               alpha=0.8,
                               fill_color="lightgray",
                               metadata_name='selections'))
     #ipshell('colorbar, colorbar_selection and ovr available:')
     self.cbar_selection = colorbar_selection
     self.cmap_renderer = cmap_renderer
     colorbar.plot = cmap_renderer
     colorbar.padding_top = scatplot.padding_top
     colorbar.padding_bottom = scatplot.padding_bottom
     self.colorbar = colorbar
     return colorbar
    def _create_plot_component(self):

        # Create a plot data object and give it this data
        self.pd = ArrayPlotData()
        self.pd.set_data("imagedata", self.data[self.data_name])

        # Create the plot
        self.tplot = Plot(self.pd, default_origin="top left")
        self.tplot.x_axis.orientation = "top"
        self.tplot.img_plot(
            "imagedata",
            name="my_plot",
            #xbounds=(0,10),
            #ybounds=(0,10),
            colormap=jet)

        # Tweak some of the plot properties
        self.tplot.title = "Matrix"
        self.tplot.padding = 50

        # Right now, some of the tools are a little invasive, and we need the
        # actual CMapImage object to give to them
        self.my_plot = self.tplot.plots["my_plot"][0]

        # Attach some tools to the plot
        self.tplot.tools.append(PanTool(self.tplot))
        zoom = ZoomTool(component=self.tplot, tool_mode="box", always_on=False)
        self.tplot.overlays.append(zoom)

        # my custom tool to get the connection information
        self.custtool = CustomTool(self.tplot)
        self.tplot.tools.append(self.custtool)

        # Create the colorbar, handing in the appropriate range and colormap
        colormap = self.my_plot.color_mapper
        self.colorbar = ColorBar(
            index_mapper=LinearMapper(range=colormap.range),
            color_mapper=colormap,
            plot=self.my_plot,
            orientation='v',
            resizable='v',
            width=30,
            padding=20)

        self.colorbar.padding_top = self.tplot.padding_top
        self.colorbar.padding_bottom = self.tplot.padding_bottom

        # create a range selection for the colorbar
        self.range_selection = RangeSelection(component=self.colorbar)
        self.colorbar.tools.append(self.range_selection)
        self.colorbar.overlays.append(
            RangeSelectionOverlay(component=self.colorbar,
                                  border_color="white",
                                  alpha=0.8,
                                  fill_color="lightgray"))

        # we also want to the range selection to inform the cmap plot of
        # the selection, so set that up as well
        self.range_selection.listeners.append(self.my_plot)

        # Create a container to position the plot and the colorbar side-by-side
        container = HPlotContainer(use_backbuffer=True)
        container.add(self.tplot)
        container.add(self.colorbar)
        container.bgcolor = "white"

        return container
예제 #6
0
def _create_plot_component():
    # Create a scalar field to colormap# Create a scalar field to colormap
    xbounds = (-2*pi, 2*pi, 600)
    ybounds = (-1.5*pi, 1.5*pi, 300)
    xs = linspace(*xbounds)
    ys = linspace(*ybounds)
    x, y = meshgrid(xs,ys)
    z = jn(2, x)*y*x

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("imagedata", z)

    # Create the plot
    plot = Plot(pd)
    plot.img_plot("imagedata",
                  name="my_plot",
                  xbounds=xbounds[:2],
                  ybounds=ybounds[:2],
                  colormap=jet)

    # Tweak some of the plot properties
    plot.title = "Selectable Image Plot"
    plot.padding = 50

    # Right now, some of the tools are a little invasive, and we need the
    # actual CMapImage object to give to them
    my_plot = plot.plots["my_plot"][0]

    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    zoom = ZoomTool(component=plot, tool_mode="box", always_on=False)
    plot.overlays.append(zoom)

    # Create the colorbar, handing in the appropriate range and colormap
    colormap = my_plot.color_mapper
    colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                        color_mapper=colormap,
                        plot=my_plot,
                        orientation='v',
                        resizable='v',
                        width=30,
                        padding=20)
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom

    # create a range selection for the colorbar
    range_selection = RangeSelection(component=colorbar)
    colorbar.tools.append(range_selection)
    colorbar.overlays.append(RangeSelectionOverlay(component=colorbar,
                                                   border_color="white",
                                                   alpha=0.8,
                                                   fill_color="lightgray"))

    # we also want to the range selection to inform the cmap plot of
    # the selection, so set that up as well
    range_selection.listeners.append(my_plot)

    # Create a container to position the plot and the colorbar side-by-side
    container = HPlotContainer(use_backbuffer = True)
    container.add(plot)
    container.add(colorbar)
    container.bgcolor = "lightgray"

    #my_plot.set_value_selection((-1.3, 6.9))

    return container
예제 #7
0
def _create_plot_component():

    # Create a scalar field to colormap
    x_extents = (-2*pi, 2*pi)
    y_extents = (-1.5*pi, 1.5*pi)
    xs = linspace(-2*pi, 2*pi, 200)
    ys = linspace(-1.5*pi, 1.5*pi, 100)
    x, y = meshgrid(xs,ys)
    zs = sin(log(abs((x+1)**4)+0.05))*cos(y)*1.1*(-y) + \
            sin(((x+1)**2 + y**2)/4)

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("imagedata", zs)

    # Create the left plot, a colormap and simple contours
    lplot = Plot(pd)
    lplot.img_plot("imagedata",
                   name="cm_plot",
                   xbounds=x_extents,
                   ybounds=y_extents,
                   colormap=gmt_drywet)
    lplot.contour_plot("imagedata",
                       type="line",
                       xbounds=x_extents,
                       ybounds=y_extents)

    # Tweak some of the plot properties
    lplot.title = "Colormap and contours"
    lplot.padding = 20
    lplot.bg_color = "white"
    lplot.fill_padding = True

    # Add some tools to the plot
    zoom = ZoomTool(lplot, tool_mode="box", always_on=False)
    lplot.overlays.append(zoom)
    lplot.tools.append(PanTool(lplot, constrain_key="shift"))

    # Right now, some of the tools are a little invasive, and we need the
    # actual CMapImage object to give to them
    cm_plot = lplot.plots["cm_plot"][0]

    # Create the colorbar, handing in the appropriate range and colormap
    colormap = cm_plot.color_mapper
    colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                        color_mapper=colormap,
                        plot=cm_plot,
                        orientation='v',
                        resizable='v',
                        width=30,
                        padding=20)
    colorbar.padding_top = lplot.padding_top
    colorbar.padding_bottom = lplot.padding_bottom

    # Create the left plot, contours of varying color and width
    rplot = Plot(pd, range2d=lplot.range2d)
    rplot.contour_plot("imagedata",
                       type="line",
                       xbounds=x_extents,
                       ybounds=y_extents,
                       bgcolor="black",
                       levels=15,
                       styles="solid",
                       widths=list(linspace(4.0, 0.1, 15)),
                       colors=gmt_drywet)

    # Add some tools to the plot
    zoom = ZoomTool(rplot, tool_mode="box", always_on=False)
    rplot.overlays.append(zoom)
    rplot.tools.append(PanTool(rplot, constrain_key="shift"))

    # Tweak some of the plot properties
    rplot.title = "Varying contour lines"
    rplot.padding = 20
    rplot.bg_color = "white"
    rplot.fill_padding = True

    # Create a container and add our plots
    container = HPlotContainer(padding=40, fill_padding=True,
                               bgcolor = "white", use_backbuffer=True)
    container.add(colorbar)
    container.add(lplot)
    container.add(rplot)
    return container
예제 #8
0
def _create_plot_component():

    # Create some data
    numpts = 1000
    x = sort(random(numpts))
    y = random(numpts)
    color = exp(-(x**2 + y**2))

    # Create a plot data obect and give it this data
    pd = ArrayPlotData()
    pd.set_data("index", x)
    pd.set_data("value", y)
    pd.set_data("color", color)

    # Create the plot
    plot = Plot(pd)
    plot.plot(("index", "value", "color"),
              type="cmap_scatter",
              name="my_plot",
              color_mapper=gist_earth,
              marker = "square",
              fill_alpha = 0.5,
              marker_size = 8,
              outline_color = "black",
              border_visible = True,
              bgcolor = "white")

    # Tweak some of the plot properties
    plot.title = "Colormapped Scatter Plot with Pan/Zoom Color Bar"
    plot.padding = 50
    plot.x_grid.visible = False
    plot.y_grid.visible = False
    plot.x_axis.font = "modern 16"
    plot.y_axis.font = "modern 16"

    # Add pan and zoom to the plot
    plot.tools.append(PanTool(plot, constrain_key="shift"))
    zoom = ZoomTool(plot)
    plot.overlays.append(zoom)

    # Create the colorbar, handing in the appropriate range and colormap
    colorbar = ColorBar(index_mapper=LinearMapper(range=plot.color_mapper.range),
                        color_mapper=plot.color_mapper,
                        orientation='v',
                        resizable='v',
                        width=30,
                        padding=20)
    colorbar.plot = plot
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom

    # Add pan and zoom tools to the colorbar
    colorbar.tools.append(PanTool(colorbar, constrain_direction="y", constrain=True))
    zoom_overlay = ZoomTool(colorbar, axis="index", tool_mode="range",
                            always_on=True, drag_button="right")
    colorbar.overlays.append(zoom_overlay)

    # Create a container to position the plot and the colorbar side-by-side
    container = HPlotContainer(plot, colorbar, use_backbuffer=True, bgcolor="lightgray")

    return container
예제 #9
0
파일: fitgui.py 프로젝트: eteq/pymodelfit
    def __init__(self,xdata=None,ydata=None,weights=None,model=None,
                 include_models=None,exclude_models=None,fittype=None,**traits):
        """

        :param xdata: the first dimension of the data to be fit
        :type xdata: array-like
        :param ydata: the second dimension of the data to be fit
        :type ydata: array-like
        :param weights:
            The weights to apply to the data. Statistically interpreted as inverse
            errors (*not* inverse variance). May be any of the following forms:

            * None for equal weights
            * an array of points that must match `ydata`
            * a 2-sequence of arrays (xierr,yierr) such that xierr matches the
              `xdata` and yierr matches `ydata`
            * a function called as f(params) that returns an array of weights
              that match one of the above two conditions

        :param model: the initial model to use to fit this data
        :type model:
            None, string, or :class:`pymodelfit.core.FunctionModel1D`
            instance.
        :param include_models:
            With `exclude_models`, specifies which models should be available in
            the "new model" dialog (see `models.list_models` for syntax).
        :param exclude_models:
            With `include_models`, specifies which models should be available in
            the "new model" dialog (see `models.list_models` for syntax).
        :param fittype:
            The fitting technique for the initial fit (see
            :class:`pymodelfit.core.FunctionModel`).
        :type fittype: string

        kwargs are passed in as any additional traits to apply to the
        application.

        """

        self.modelpanel = View(Label('empty'),kind='subpanel',title='model editor')

        self.tmodel = TraitedModel(model)

        if model is not None and fittype is not None:
            self.tmodel.model.fittype = fittype

        if xdata is None or ydata is None:
            if not hasattr(self.tmodel.model,'data') or self.tmodel.model.data is None:
                raise ValueError('data not provided and no data in model')
            if xdata is None:
                xdata = self.tmodel.model.data[0]
            if ydata is None:
                ydata = self.tmodel.model.data[1]
            if weights is None:
                weights = self.tmodel.model.data[2]

        self.on_trait_change(self._paramsChanged,'tmodel.paramchange')

        self.modelselector = NewModelSelector(include_models,exclude_models)

        self.data = [xdata,ydata]


        if weights is None:
            self.weights = np.ones_like(xdata)
            self.weighttype = 'equal'
        else:
            self.weights = np.array(weights,copy=True)
            self.savews = True

        weights1d = self.weights
        while len(weights1d.shape)>1:
            weights1d = np.sum(weights1d**2,axis=0)

        pd = ArrayPlotData(xdata=self.data[0],ydata=self.data[1],weights=weights1d)
        self.plot = plot = Plot(pd,resizable='hv')

        self.scatter = plot.plot(('xdata','ydata','weights'),name='data',
                         color_mapper=_cmapblack if self.weights0rem else _cmap,
                         type='cmap_scatter', marker='circle')[0]

        self.errorplots = None

        if not isinstance(model,FunctionModel1D):
            self.fitmodel = True

        self.updatemodelplot = False #force plot update - generates xmod and ymod
        plot.plot(('xmod','ymod'),name='model',type='line',line_style='dash',color='black',line_width=2)
        del plot.x_mapper.range.sources[-1]  #remove the line plot from the x_mapper source so only the data is tied to the scaling

        self.on_trait_change(self._rangeChanged,'plot.index_mapper.range.updated')

        self.pantool = PanTool(plot,drag_button='left')
        plot.tools.append(self.pantool)
        self.zoomtool = ZoomTool(plot)
        self.zoomtool.prev_state_key = KeySpec('a')
        self.zoomtool.next_state_key = KeySpec('s')
        plot.overlays.append(self.zoomtool)

        self.scattertool = None
        self.scatter.overlays.append(ScatterInspectorOverlay(self.scatter,
                        hover_color = "black",
                        selection_color="black",
                        selection_outline_color="red",
                        selection_line_width=2))


        self.colorbar = colorbar = ColorBar(index_mapper=LinearMapper(range=plot.color_mapper.range),
                                            color_mapper=plot.color_mapper.range,
                                            plot=plot,
                                            orientation='v',
                                            resizable='v',
                                            width = 30,
                                            padding = 5)
        colorbar.padding_top = plot.padding_top
        colorbar.padding_bottom = plot.padding_bottom
        colorbar._axis.title = 'Weights'

        self.plotcontainer = container = HPlotContainer(use_backbuffer=True)
        container.add(plot)
        container.add(colorbar)

        super(FitGui,self).__init__(**traits)

        self.on_trait_change(self._scale_change,'plot.value_scale,plot.index_scale')

        if weights is not None and len(weights)==2:
            self.weightsChanged() #update error bars
 def create_plot_component(self):
     self.plot_data = ArrayPlotData()
     self.plot_data.set_data("imagedata", self.model.intens_yz)
     self.plot_data.set_data('vert_image',self.model.intens_xz)
     self.plot_data.set_data('beam_section', self.model.intens_xy)
     # Create a contour polygon plot of the data
     plot = Plot(self.plot_data)
     plot.title = 'Horizontal plane'
     plot.padding=5
     plot.padding_top = 22
     plot.padding_left=25
     plot.padding_bottom=20
     my_plot = plot.img_plot("imagedata", name='my_plot', # xbounds=x,#ybounds=y,
                          colormap=jet, hide_grids=True)[0]
     
     colormap = my_plot.color_mapper
     colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                     color_mapper=colormap,
                     plot=my_plot,
                     orientation='v',
                     resizable='v',
                     width=25,
                     padding=0)      
     colorbar.padding_top = plot.padding_top
     colorbar.padding_bottom = plot.padding_bottom
     colorbar.padding_left = 35
     colorbar.padding_right = 30                                         
     colorbar._axis.tick_label_formatter = lambda x: ('%.0e'%x)                     
                          
     rplot = Plot(self.plot_data)
     rplot.title = 'Vertical plane'
     rplot.padding=plot.padding
     rplot.padding_top = plot.padding_top
     rplot.padding_left = plot.padding_left
     rplot.padding_bottom = plot.padding_bottom   
     my_plot = rplot.img_plot('vert_image',name='vert_plot',colormap=jet)[0]
     colormap = my_plot.color_mapper
     colorbar_rplot = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                     color_mapper=colormap,
                     plot=my_plot,
                     orientation='v',
                     resizable='v',
                     width=25,
                     padding=0)      
     colorbar_rplot.padding_top = plot.padding_top
     colorbar_rplot.padding_bottom = plot.padding_bottom
     colorbar_rplot.padding_right = 20
     colorbar_rplot.padding_left = 35    
     colorbar_rplot._axis.tick_label_formatter = lambda x: ('%.0e'%x) 
        
     sec_plot = Plot(self.plot_data)
     sec_plot.title = 'Beam section'
     sec_plot.padding=plot.padding
     sec_plot.padding_top = plot.padding_top
     sec_plot.padding_left = plot.padding_left
     sec_plot.padding_bottom = plot.padding_bottom   
     my_plot = sec_plot.img_plot('beam_section',name='beam_section_plot',colormap=jet)[0]
     colormap = my_plot.color_mapper
     colorbar_sec_plot = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                     color_mapper=colormap,
                     plot=my_plot,
                     orientation='v',
                     resizable='v',
                     width=25,
                     padding=0)      
     colorbar_sec_plot.padding_top = plot.padding_top
     colorbar_sec_plot.padding_bottom = plot.padding_bottom
     colorbar_sec_plot.padding_right = 20
     colorbar_sec_plot.padding_left = 35    
     colorbar_sec_plot._axis.tick_label_formatter = lambda x: ('%.0e'%x)    
     container = HPlotContainer(use_backbuffer = True)
     container.add(plot)
     container.add(colorbar)
     container.add(rplot)
     container.add(colorbar_rplot)
     container.add(sec_plot)
     container.add(colorbar_sec_plot)
     self.plot_container = container
예제 #11
0
def _create_plot_component(file_name):
    # Create a scalar field to colormap
    z = load(file_name)
    pd = ArrayPlotData()
    pd.set_data("imagedata", z)
    
    # Create the plot
    plot = Plot(pd)
    plot.bgcolor = 'gray'
    
    img_plot = plot.img_plot("imagedata",
                             name='my_plot', 
                             colormap=jet,
                             hide_grids=True)[0]
    #cont_plot=plot.contour_plot('imagedata', type='line', name='countour')
    # Tweak some of the plot properties
    #plot.title = file_name
    plot.padding = 40
    plot.padding_right=20
    # Attach some tools to the plot
    plot.tools.append(PanTool(plot))
    #plot.tools.append(TraitsTool(plot))
    zoom = ZoomTool(component=img_plot, tool_mode="box", always_on=False)
    img_plot.overlays.append(zoom)
    #plot.y_axis.tick_label_formatter = lambda x: "%.3e" % x
    #plot.x_axis.tick_label_formatter = lambda x: "%.3e" % x
    #plot.tools.append(SaveTool(plot))
    # Right now, some of the tools are a little invasive, and we need the
    # actual CMapImage object to give to them
    my_plot = img_plot#plot.plots["my_plot"][0]
    colormap = my_plot.color_mapper
    colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range),
                        color_mapper=colormap,
                        plot=my_plot,
                        orientation='v',
                        resizable='v',
                        width=25,
                        padding=0)
    colorbar.origin = 'bottom left'
    #colorbar._axis.tick_label_formatter = lambda x: '%.0e'%(x*10e6) + u' [\u00b5' + 'Watt]'
    colorbar._axis.tick_label_formatter = lambda x: ('%.0e'%(x*1e6))
    colorbar._axis.orientation = 'right'
    colorbar._axis.title = u'Intensity [\u00b5W]'
    colorbar.padding_top = plot.padding_top
    colorbar.padding_bottom = plot.padding_bottom
    colorbar.padding_right = 100
    # create a range selection for the colorbar
    range_selection = RangeSelection(component=colorbar)
    colorbar.tools.append(range_selection)
    colorbar.overlays.append(RangeSelectionOverlay(component=colorbar,
                                                   border_color="white",
                                                   alpha=0.5,
                                                   fill_color="lightgray"))
    
    range_selection.listeners.append(my_plot)
    
    imgtool = ImageInspectorTool(img_plot)
    img_plot.tools.append(imgtool)
    plot.overlays.append(ImageInspectorOverlay(component=img_plot, image_inspector=imgtool))
    # we also want to the range selection to inform the cmap plot of
    # the selection, so set that up as well

    # Create a container to position the plot and the colorbar side-by-side
    container = HPlotContainer(use_backbuffer = True)
    container.add(plot)
    container.add(colorbar)
    container.bgcolor = "white"
    container.tools.append(SaveTool(container))
    container.tools.append(TraitsTool(container))
    #my_plot.set_value_selection((-1.3, 6.9))
    return container