예제 #1
0
from environments.random_search import RandomSearch

DATA_DIR = "/home/suching/reproducibility/data/sst/"

BOW_LINEAR = {
    "CUDA_DEVICE": 0,
    "USE_SPACY_TOKENIZER": 0,
    "SEED": RandomSearch.random_integer(0, 100),
    "DATA_DIR": DATA_DIR,
    "THROTTLE": None,
    "EMBEDDING": "BOW_COUNTS",
    "ENCODER": None,
    "LEARNING_RATE": RandomSearch.random_loguniform(1e-6, 1e-1),
    "DROPOUT": RandomSearch.random_uniform(0, 0.5),
    "BATCH_SIZE": 32,
}

# CLASSIFIER_SEARCH = {
#         "CUDA_DEVICE": 0,
#         "USE_SPACY_TOKENIZER": 0,
#         "SEED": RandomSearch.random_integer(0, 100),
#         "DATA_DIR": DATA_DIR,
#         "THROTTLE": None,
#         "EMBEDDING": "ELMO_TRANSFORMER",
#         "ENCODER": "LSTM",
#         "HIDDEN_SIZE": RandomSearch.random_integer(64, 512),
#         "NUM_ENCODER_LAYERS": RandomSearch.random_integer(1, 3),
#         "MAX_FILTER_SIZE": RandomSearch.random_integer(5, 10),
#         "NUM_FILTERS": RandomSearch.random_integer(64, 512),
#         "AGGREGATIONS": RandomSearch.random_choice("final_state", "maxpool", "meanpool", "attention"),
#         "LEARNING_RATE": RandomSearch.random_loguniform(1e-6, 1e-1),
예제 #2
0
 "LEARNING_RATE":
 0.004,
 "DROPOUT":
 0.5,
 "VAMPIRE_DIRECTORY":
 os.environ.get("VAMPIRE_DIR", None),
 "VAMPIRE_DIM":
 os.environ.get("VAMPIRE_DIM", None),
 "BATCH_SIZE":
 32,
 "NUM_ENCODER_LAYERS":
 1,
 "NUM_OUTPUT_LAYERS":
 2,
 "MAX_FILTER_SIZE":
 RandomSearch.random_integer(3, 6),
 "NUM_FILTERS":
 RandomSearch.random_integer(64, 512),
 "HIDDEN_SIZE":
 RandomSearch.random_integer(64, 512),
 "AGGREGATIONS":
 RandomSearch.random_subset("maxpool", "meanpool", "attention",
                            "final_state"),
 "MAX_CHARACTER_FILTER_SIZE":
 RandomSearch.random_integer(3, 6),
 "NUM_CHARACTER_FILTERS":
 RandomSearch.random_integer(16, 64),
 "CHARACTER_HIDDEN_SIZE":
 RandomSearch.random_integer(16, 128),
 "CHARACTER_EMBEDDING_DIM":
 RandomSearch.random_integer(16, 64),
예제 #3
0
        "DEV_PATH":  os.environ["DATA_DIR"] + "/dev.jsonl",
        "TEST_PATH":  os.environ["DATA_DIR"] + "/test.jsonl",
        "THROTTLE": os.environ.get("THROTTLE", None),
        "USE_SPACY_TOKENIZER": 1,
        "FREEZE_EMBEDDINGS": ["VAMPIRE"],
        "EMBEDDINGS": ["VAMPIRE", "RANDOM"],
        "ENCODER": "AVERAGE",
        "EMBEDDING_DROPOUT": 0.5,
        "LEARNING_RATE": 0.004,
        "DROPOUT": 0.5,
        "VAMPIRE_DIRECTORY": os.environ.get("VAMPIRE_DIR", None),
        "VAMPIRE_DIM": os.environ.get("VAMPIRE_DIM", None),
        "BATCH_SIZE": 32,
        "NUM_ENCODER_LAYERS": 1,
        "NUM_OUTPUT_LAYERS": 2, 
        "MAX_FILTER_SIZE": RandomSearch.random_integer(3, 6),
        "NUM_FILTERS": RandomSearch.random_integer(64, 512),
        "HIDDEN_SIZE": RandomSearch.random_integer(64, 512),
        "AGGREGATIONS": RandomSearch.random_subset("maxpool", "meanpool", "attention", "final_state"),
        "MAX_CHARACTER_FILTER_SIZE": RandomSearch.random_integer(3, 6),
        "NUM_CHARACTER_FILTERS": RandomSearch.random_integer(16, 64),
        "CHARACTER_HIDDEN_SIZE": RandomSearch.random_integer(16, 128),
        "CHARACTER_EMBEDDING_DIM": RandomSearch.random_integer(16, 64),
        "CHARACTER_ENCODER": RandomSearch.random_choice("LSTM", "CNN", "AVERAGE"),
        "NUM_CHARACTER_ENCODER_LAYERS": RandomSearch.random_choice(1, 2),
}

VAMPIRE = {
        "LAZY_DATASET_READER": os.environ.get("LAZY", 0),
        "KL_ANNEALING": "linear",
        "SIGMOID_WEIGHT_1": 0.25,