def _populate_grid_spatial(md, mtl_): product_md = _get(mtl_, 'PRODUCT_METADATA') # We don't have a single set of dimensions. Depends on the band? # md.grid_spatial.dimensions = [] if not md.grid_spatial: md.grid_spatial = ptype.GridSpatialMetadata() if not md.grid_spatial.projection: md.grid_spatial.projection = ptype.ProjectionMetadata() md.grid_spatial.projection.geo_ref_points = ptype.PointPolygon( ul=ptype.Point(x=_get(product_md, 'corner_ul_projection_x_product'), y=_get(product_md, 'corner_ul_projection_y_product')), ur=ptype.Point(x=_get(product_md, 'corner_ur_projection_x_product'), y=_get(product_md, 'corner_ur_projection_y_product')), ll=ptype.Point(x=_get(product_md, 'corner_ll_projection_x_product'), y=_get(product_md, 'corner_ll_projection_y_product')), lr=ptype.Point(x=_get(product_md, 'corner_lr_projection_x_product'), y=_get(product_md, 'corner_lr_projection_y_product'))) # centre_point=None, projection_md = _get(mtl_, 'PROJECTION_PARAMETERS') md.grid_spatial.projection.datum = _get(projection_md, 'datum') md.grid_spatial.projection.ellipsoid = _get(projection_md, 'ellipsoid') # Where does this come from? 'ul' etc. # point_in_pixel=None, md.grid_spatial.projection.map_projection = _get(projection_md, 'map_projection') md.grid_spatial.projection.resampling_option = _get( projection_md, 'resampling_option') md.grid_spatial.projection.datum = _get(projection_md, 'datum') md.grid_spatial.projection.ellipsoid = _get(projection_md, 'ellipsoid') md.grid_spatial.projection.zone = _get(projection_md, 'utm_zone') md.grid_spatial.projection.orientation = _get(projection_md, 'orientation')
def populate_from_image_metadata(md): """ Populate by extracting metadata from existing band files. :type md: eodatasets.type.DatasetMetadata :rtype: eodatasets.type.DatasetMetadata """ for band_id, band in md.image.bands.items(): i = gdal.Open(str(band.path)) if not i: # TODO: log? throw? continue spacial_ref = osr.SpatialReference(i.GetProjectionRef()) # Extract actual image coords # md.grid_spatial.projection. band.shape = ptype.Point(i.RasterXSize, i.RasterYSize) band.cell_size = ptype.Point(abs(i.GetGeoTransform()[1]), abs(i.GetGeoTransform()[5])) # TODO separately: create standardised WGS84 coords. for md.extent # wkt_contents = spacial_ref.ExportToPrettyWkt() # TODO: if srs IsGeographic()? Otherwise srs IsProjected()? if not md.grid_spatial: md.grid_spatial = ptype.GridSpatialMetadata() if not md.grid_spatial.projection: md.grid_spatial.projection = ptype.ProjectionMetadata() md.grid_spatial.projection.geo_ref_points = _get_gdal_image_coords(i) md.grid_spatial.projection.unit = spacial_ref.GetLinearUnitsName() md.grid_spatial.projection.zone = spacial_ref.GetUTMZone() # ? md.grid_spatial.projection.datum = 'GDA94' md.grid_spatial.projection.ellipsoid = 'GRS80' # TODO: DATUM/Reference system etc. if not md.extent: md.extent = ptype.ExtentMetadata() md.extent.coord = reproject_coords( md.grid_spatial.projection.geo_ref_points, spacial_ref) # Get positional info, projection etc. # Is projection/etc same as previous? # -- If all match, set on wider image. i = None return md
center_dt=datetime.datetime(2005, 1, 7, 2, 3, 36, 927051) ), grid_spatial=ptype.GridSpatialMetadata( projection=ptype.ProjectionMetadata( geo_ref_points=ptype.PointPolygon( ul=ptype.Point( x=350012.500, y=8028987.500 ), ur=ptype.Point( x=587012.500, y=8028987.500 ), ll=ptype.Point( x=350012.500, y=7817987.500 ), lr=ptype.Point( x=587012.500, y=7817987.500 ) ), datum='GDA94', ellipsoid='GRS80', map_projection='UTM', orientation='NORTH_UP', resampling_option='CUBIC_CONVOLUTION', zone=-50 ) ), image=ptype.ImageMetadata( satellite_ref_point_start=ptype.Point(x=114, y=73),
algorithm=ptype.AlgorithmMetadata(name='terrain', version='1.0'), ), grid_spatial=ptype.GridSpatialMetadata( projection=ptype.ProjectionMetadata( geo_ref_points=ptype.PointPolygon( ul=ptype.Point( x=397012.5, y=7235987.5 ), ur=ptype.Point( x=625012.5, y=7235987.5 ), ll=ptype.Point( x=397012.5, y=7013987.5 ), lr=ptype.Point( x=625012.5, y=7013987.5 ) ), datum='GDA94', ellipsoid='GRS80', map_projection='UTM', orientation='NORTH_UP', resampling_option='CUBIC_CONVOLUTION', zone=-53 ) ), )
def _build_ls8_ortho(): _reset_runtime_id() return ptype.DatasetMetadata( id_=uuid.UUID('17b92c16-51d3-11e4-909d-005056bb6972'), ga_label='LS8_OLITIRS_OTH_P51_GALPGS01-002_101_078_20141012', product_type='GAORTHO01', creation_dt=dateutil.parser.parse('2014-10-12 05:46:20'), size_bytes=2386550 * 1024, platform=ptype.PlatformMetadata(code='LANDSAT-8'), instrument=ptype.InstrumentMetadata(name='OLI_TIRS', type_="Multi-Spectral", operation_mode='PUSH-BROOM'), format_=ptype.FormatMetadata(name='GeoTiff', version=1), extent=ptype.ExtentMetadata( reference_system='WGS84', coord=ptype.CoordPolygon(ul=ptype.Coord(lat=-24.97, lon=133.97969), ur=ptype.Coord(lat=-24.96826, lon=136.24838), lr=ptype.Coord(lat=-26.96338, lon=136.26962), ll=ptype.Coord(lat=-26.96528, lon=133.96233)), from_dt=dateutil.parser.parse("2014-10-12T00:55:54"), center_dt=dateutil.parser.parse("2014-10-12T00:56:06"), to_dt=dateutil.parser.parse("2014-10-12T00:56:18"), ), grid_spatial=ptype.GridSpatialMetadata( dimensions=[ ptype.DimensionMetadata(name='sample', resolution=25.0, size=9161), ptype.DimensionMetadata(name='line', resolution=25.0, size=9161) ], projection=ptype.ProjectionMetadata( centre_point=ptype.Point(511512.500000, 7127487.500000), geo_ref_points=ptype.PointPolygon( ul=ptype.Point(397012.5, 7237987.5), ur=ptype.Point(626012.5, 7237987.5), ll=ptype.Point(397012.5, 7016987.5), lr=ptype.Point(626012.5, 7016987.5)), datum='GDA94', ellipsoid='GRS80', point_in_pixel='UL', map_projection='UTM', resampling_option='CUBIC_CONVOLUTION', zone=-53)), browse={ 'medium': ptype.BrowseMetadata(path=Path( 'product/LS8_OLITIRS_OTH_P51_GALPGS01-032_101_078_20141012.jpg' ), file_type='image/jpg', cell_size=219.75, red_band=7, green_band=5, blue_band=1), 'full': ptype.BrowseMetadata(path=Path( 'LS8_OLITIRS_OTH_P51_GALPGS01-032_101_078_20141012_FR.jpg'), file_type='image/jpg', cell_size=25.0, red_band=7, green_band=5, blue_band=1) }, image=ptype.ImageMetadata( satellite_ref_point_start=ptype.Point(101, 78), cloud_cover_percentage=0, cloud_cover_details=None, sun_elevation=58.00268508, sun_azimuth=59.41814014, ground_control_points_model=420, geometric_rmse_model=4.610, geometric_rmse_model_x=3.527, geometric_rmse_model_y=2.968, # TODO: What are these two? viewing_incidence_angle_long_track=0, viewing_incidence_angle_x_track=0, bands={ 'coastal_aerosol': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B1.TIF'), number=1, type_='reflective', cell_size=25.0, ), 'visible_blue': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B2.TIF'), number=2, type_='reflective', cell_size=25.0, ), 'visible_green': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B3.TIF'), number=3, type_='reflective', cell_size=25.0, ), 'visible_red': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B4.TIF'), number=4, type_='reflective', cell_size=25.0, ), 'near_infrared': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B5.TIF'), number=5, type_='reflective', cell_size=25.0, ), 'short_wave_infrared1': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B6.TIF'), number=6, type_='reflective', cell_size=25.0, ), 'short_wave_infrared2': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B7.TIF'), number=7, type_='reflective', cell_size=25.0, ), 'panchromatic': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B8.TIF'), number=8, type_='panchromatic', cell_size=12.50, shape=ptype.Point(17761, 18241), ), 'cirrus': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B9.TIF'), number=9, type_='atmosphere', ), 'thermal_infrared1': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B10.TIF'), number=10, type_='thermal', cell_size=25.0, shape=ptype.Point(8881, 9121), ), 'thermal_infrared2': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_B11.TIF'), number=11, type_='thermal', cell_size=25.0, shape=ptype.Point(8881, 9121), ), 'quality': ptype.BandMetadata( path=Path('product/LC81010782014285LGN00_BQA.TIF'), number='QA', type_='quality', ) }), lineage=ptype.LineageMetadata( algorithm=ptype.AlgorithmMetadata( name='Pinkmatter Landsat Processor', version='3.3.3104', parameters={ 'resampling': 'CC', 'radiometric_correction': 'CPF', 'orientation': 'NUP', 'hemisphere': 'S', }), machine=ptype.MachineMetadata( hostname='rhe-jm-prod08.prod.lan', type_id='jobmanager', uname= 'Linux rhe-jm-dev08.dev.lan 2.6.32-279.22.1.el6.x86_64 #1 SMP Sun Oct ' '12 ' '09:21:40 EST 2014 x86_64 x86_64 x86_64 GNU/Linux'), ancillary={ 'cpf': ptype.AncillaryMetadata( name='L8CPF20141001_20141231.01', uri= '/eoancillarydata/sensor-specific/LANDSAT8/CalibrationParameterFile' '/L8CPF20141001_20141231.01'), 'bpf_tirs': ptype.AncillaryMetadata( name='LT8BPF20141012002432_20141012020301.01', uri= '/eoancillarydata/sensor-specific/LANDSAT8/BiasParameterFile/2014/10' '/LT8BPF20141012002432_20141012020301.01'), 'bpf_oli': ptype.AncillaryMetadata( name='LO8BPF20141012002825_20141012011100.01', uri= '/eoancillarydata/sensor-specific/LANDSAT8/BiasParameterFile/2014/10' '/LT8BPF20141012002432_20141012020301.01'), 'rlut': ptype.AncillaryMetadata(name='L8RLUT20130211_20431231v09.h5') }, source_datasets={'satellite_telemetry_data': _build_ls8_raw()}))
def _build_ls8_nbar(): _reset_runtime_id() nbar = ptype.DatasetMetadata( id_=uuid.UUID("249ae098-bd88-11e4-beaa-1040f381a756"), size_bytes=622208 * 1024, ga_label='LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012', product_type='GANBAR01', platform=ptype.PlatformMetadata(code='LANDSAT-8'), instrument=ptype.InstrumentMetadata(name='OLI_TIRS', type_="Multi-Spectral", operation_mode='PUSH-BROOM'), # acquisition=ptype.AcquisitionMetadata(), format_=ptype.FormatMetadata(name='GeoTiff', version=1), extent=ptype.ExtentMetadata( reference_system='WGS84', coord=ptype.CoordPolygon(ul=ptype.Coord(lat=-24.97, lon=133.97969), ur=ptype.Coord(lat=-24.96826, lon=136.24838), lr=ptype.Coord(lat=-26.96338, lon=136.26962), ll=ptype.Coord(lat=-26.96528, lon=133.96233)), from_dt=dateutil.parser.parse("2014-10-12T00:55:54"), to_dt=dateutil.parser.parse("2014-10-12T00:56:18"), ), grid_spatial=ptype.GridSpatialMetadata( dimensions=[ ptype.DimensionMetadata(name='sample', resolution=25.0, size=9161), ptype.DimensionMetadata(name='line', resolution=25.0, size=9161) ], projection=ptype.ProjectionMetadata( centre_point=ptype.Point(511512.500000, 7127487.500000), geo_ref_points=ptype.PointPolygon( ul=ptype.Point(397012.5, 7237987.5), ur=ptype.Point(626012.5, 7237987.5), ll=ptype.Point(397012.5, 7016987.5), lr=ptype.Point(626012.5, 7016987.5)), datum='GDA94', ellipsoid='GRS80', point_in_pixel='UL', map_projection='UTM', resampling_option='CUBIC_CONVOLUTION', zone=-53)), browse={ 'medium': ptype.BrowseMetadata(path=Path( 'LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012.tif'), file_type='image/jpg', cell_size=219.75, red_band=7, green_band=5, blue_band=2), 'full': ptype.BrowseMetadata(path=Path( 'LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_FR.tif'), file_type='image/jpg', cell_size=25.0, red_band=7, green_band=5, blue_band=2) }, image=ptype.ImageMetadata( satellite_ref_point_start=ptype.Point(101, 78), cloud_cover_percentage=0.01, cloud_cover_details=None, # TODO: What are these two? viewing_incidence_angle_long_track=0, viewing_incidence_angle_x_track=0, bands={ '1': ptype.BandMetadata(path=Path( 'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B1.tif' ), ), '2': ptype.BandMetadata(path=Path( 'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B2.tif' ), ), '3': ptype.BandMetadata(path=Path( 'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B3.tif' ), ), '4': ptype.BandMetadata(path=Path( 'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B4.tif' ), ), '5': ptype.BandMetadata(path=Path( 'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B5.tif' ), ), '6': ptype.BandMetadata(path=Path( 'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B6.tif' ), ), '7': ptype.BandMetadata(path=Path( 'product/LS8_OLI_TIRS_NBAR_P54_GANBAR01-015_101_078_20141012_B7.tif' ), ) }), lineage=ptype.LineageMetadata( algorithm=ptype.AlgorithmMetadata(name='GANBAR', version='3.2.1', parameters={}), machine=ptype.MachineMetadata(), source_datasets={'level1': _build_ls8_ortho()}, ancillary={})) return nbar