def test_dcost(self): state_grid = np.arange ( 1, 365*10, 5 ) gamma = 100 lag = 1 N = len(state_grid) state_config = OrderedDict ({'magnitude':3}) I = np.identity( N ) D = np.matrix(I - np.roll( I, lag )) x = np.ones_like(state_grid)*3. a = TemporalSmoother ( state_grid, gamma, lag=lag, required_params=['magnitude'] ) x_dict = OrderedDict ({'magnitude':x}) cost = gamma*(D.dot(x)).T.dot(D.dot(x)) assert_equal ( np.squeeze(a.der_cost( x_dict, state_config)[1]), np.zeros(N) )
def test_cost(self): state_grid = np.arange ( 1, 365*10, 5 ) gamma = 100 lag = 1 N = len(state_grid) state_config = OrderedDict ({'magnitude':3}) I = np.identity( N ) D = np.matrix(I - np.roll( I, lag )) x = np.ones_like(state_grid)*3. a = TemporalSmoother ( state_grid, gamma, lag=lag, required_params=['magnitude'] ) x_dict = OrderedDict ({'magnitude':x}) cost = x.dot ( D*D.T).dot(x) cost = 0.5*gamma*cost #import pdb; pdb.set_trace() assert_equal ( np.squeeze(a.der_cost( x_dict, state_config)[0]), cost )
def test_dcost(self): state_grid = np.arange(1, 365 * 10, 5) gamma = 100 lag = 1 N = len(state_grid) state_config = OrderedDict({'magnitude': 3}) I = np.identity(N) D = np.matrix(I - np.roll(I, lag)) x = np.ones_like(state_grid) * 3. a = TemporalSmoother(state_grid, gamma, lag=lag, required_params=['magnitude']) x_dict = OrderedDict({'magnitude': x}) cost = gamma * (D.dot(x)).T.dot(D.dot(x)) assert_equal(np.squeeze(a.der_cost(x_dict, state_config)[1]), np.zeros(N))
def test_cost(self): state_grid = np.arange(1, 365 * 10, 5) gamma = 100 lag = 1 N = len(state_grid) state_config = OrderedDict({'magnitude': 3}) I = np.identity(N) D = np.matrix(I - np.roll(I, lag)) x = np.ones_like(state_grid) * 3. a = TemporalSmoother(state_grid, gamma, lag=lag, required_params=['magnitude']) x_dict = OrderedDict({'magnitude': x}) cost = x.dot(D * D.T).dot(x) cost = 0.5 * gamma * cost #import pdb; pdb.set_trace() assert_equal(np.squeeze(a.der_cost(x_dict, state_config)[0]), cost)