def coevo(): # Create a pool for the policies pi_pool = Pool.spawn(Genome.open(NN_STRUCTURE_FILE), 20, std=8) # Create a pool of z's, starting around [0.5,0.5], should probably be better z_list = [[x] for x in np.linspace(0, 0.5, 5)] genomes = BasicGenome.from_list(z_list, 5) org_list = [Organism(genome) for genome in genomes] z_pool = Pool(org_list) avg_fitness = [] champ_fitness = [] for i in xrange(150): pi_pool = eonn.epoch(pi_pool, len(pi_pool)) z_pool = eonn.epoch(z_pool, len(z_pool)) for pi_org, z_org in itertools.product(pi_pool, z_pool): reward = cliff(pi_org.genome, z=[z_org.weights[0]], verbose=False) pi_org.evals.append(reward) z_org.evals.append(reward) for org in z_pool: org.evals = [np.var(org.evals)] avg_fitness.append(pi_pool.fitness) champion = max(pi_pool) champ_fitness.append(champion.fitness) return avg_fitness, champ_fitness
def main(): """ Main function. """ pool = Pool.spawn(Genome.open(NN_STRUCTURE_FILE), 20, std=1) # Set evolutionary parameters eonn.samplesize = 5 # Sample size used for tournament selection eonn.keep = 5 # Nr. of organisms copied to the next generation (elitism) eonn.mutate_prob = 0.75 # Probability that offspring is being mutated eonn.mutate_frac = 0.2 # Fraction of genes that get mutated eonn.mutate_std = 0.1 # Std. dev. of mutation distribution (gaussian) eonn.mutate_repl = 0.25 # Probability that a gene gets replaced directory = "pics/" + ''.join(rand.sample(letters + digits, 5)) os.makedirs(directory) # Evolve population for j in xrange(1, ROUNDS + 1): pool = eonn.optimize(pool, cliff, epochs=EPOCHS, evals=EVALS) print "AFTER EPOCH", j * EPOCHS print "average fitness %.1f" % pool.fitness champion = max(pool) print "champion fitness %.1f" % champion.fitness for i in xrange(10): cliff(champion.policy, verbose=True) plt.savefig(directory + "/" + str(j * EPOCHS) + ".png") plt.clf() with open(directory + '/best.net', 'w') as f: f.write('%s' % champion.genome) print "Done, everything saved in ", directory
def initGP(): """Do simulations with random pi,z and create GP, X, y""" poolsize = 68 pool = Pool.spawn(Genome.open(NN_STRUCTURE_FILE), poolsize, std=10) X = [] for i, org in enumerate(pool): org.mutate() genome = org.genome w = genome.weights z = [np.random.uniform(0, 0.3)] reward = cliff(genome, z) while reward <= 0 and len(X) < poolsize / 2: #Train input policies to reach the goal. org.mutate() genome = org.genome w = genome.weights reward = cliff(genome, z) if not len(X): X = np.atleast_2d(w + z) y = np.atleast_2d([reward]) else: X = np.append(X, [w + z], axis=0) y = np.append(y, [reward]) # Initialize GP with kernel parameters. GP = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) GP.fit(X, y) return GP, X, y
def learn_genomeIRL(self): #input the reward function pool = Pool.spawn(Genome.open('policies/generic.net'), 20) # Set evolutionary parameters eonnIRL.keep = 15 ; eonnIRL.mutate_prob = 0.4 ; eonnIRL.mutate_frac = 0.1;eonnIRL.mutate_std = 0.8;eonnIRL.mutate_repl = 0.15 # Evolve population pool = eonnIRL.optimize(pool, self.percieved_eval,400) # These are imported functions from EONNIRL champion = max(pool) # Print results print '\nerror:', math.exp(1 / self.percieved_eval(champion.policy)) #print '\ngenome:\n%s' % champion.genome return champion.policy
def learnGenomeIRL(theta): #input the reward function pool = Pool.spawn(Genome.open('policies/generic.net'), 20) # Set evolutionary parameters eonnIRL.keep = 15 eonnIRL.mutate_prob = 0.4 eonnIRL.mutate_frac = 0.1 eonnIRL.mutate_std = 0.8 eonnIRL.mutate_repl = 0.15 # Evolve population pool = eonnIRL.optimize(pool, hoverIRL, theta) champion = max(pool) # Print results print '\nerror:', math.exp(1 / hover(champion.policy)) print '\nerror:', math.exp(1 / hoverIRL(champion.policy, theta)) print '\ngenome:\n%s' % champion.genome
def learnGenomeIRL(theta): #input the reward function pool = Pool.spawn(Genome.open('policies/generic.net'), 20) # Set evolutionary parameters eonnIRL.keep = 15 eonnIRL.mutate_prob = 0.4 eonnIRL.mutate_frac = 0.1 eonnIRL.mutate_std = 0.8 eonnIRL.mutate_repl = 0.15 # Evolve population pool = eonnIRL.optimize(pool, hoverIRL,theta) champion = max(pool) # Print results print '\nerror:', math.exp(1 / hover(champion.policy)) print '\nerror:', math.exp(1 / hoverIRL(champion.policy,theta)) print '\ngenome:\n%s' % champion.genome
def main(): """ Main function. """ pool = Pool.spawn(Genome.open('mc.net'), 20, std=5.0) # Set evolutionary parameters eonn.KEEP = 5 eonn.MUTATE_PROB = 0.9 eonn.MUTATE_FRAC = 0.2 eonn.MUTATE_STD = 8.0 eonn.MUTATE_REPL = 0.1 # Evolve population pool = eonn.optimize(pool, mc) champion = max(pool) # Print results print '\ntrace:' mc(champion.policy, verbose=True) print '\ngenome:\n%s' % champion.genome
def find_best(GP, epochs=100): """ Find the best policy in the GP """ pool = Pool.spawn(Genome.open(NN_STRUCTURE_FILE), 50, std=8) all_z = list(np.linspace(0, max_wind, 10)) for n in xrange(epochs): if n != 0: pool = eonn.epoch(pool, len(pool)) weights = [np.append(org.weights, z) for org in pool for z in all_z] reward = GP.predict(weights) for i in xrange(len(pool)): pool[i].evals = list(reward[i * len(all_z):(i + 1) * len(all_z)]) champion = max(pool) return champion
def main(): """ Main function. """ pool = Pool.spawn(Genome.open('mc.net'), 20, std=5.0) # Set evolutionary parameters eonn.keep = 5 eonn.mutate_prob = 0.9 eonn.mutate_frac = 0.2 eonn.mutate_std = 8.0 eonn.mutate_repl = 0.1 # Evolve population pool = eonn.optimize(pool, mc) champion = max(pool) # Print results print '\ntrace:' mc(champion.policy, verbose=True) print '\ngenome:\n%s' % champion.genome
def find_best_upper(GP, epochs=100): """ Find policy with highest upperbound """ pool = Pool.spawn(Genome.open(NN_STRUCTURE_FILE), 50, std=8) all_z = list(np.linspace(0, max_wind, 10)) for n in xrange(epochs): if n != 0: pool = eonn.epoch(pool, len(pool)) weights = [np.append(org.weights, z) for org in pool for z in all_z] reward, MSE = GP.predict(weights, eval_MSE=True) reward += 1.96 * np.sqrt(MSE) for i in xrange(len(pool)): pool[i].evals = list(reward[i * len(all_z):(i + 1) * len(all_z)]) champion = max(pool) return champion
def acquisition(GP, epochs): """ Select the best (pi,z)-pair to evaluate using GP and GA """ # Create a pool for the policies pi_pool = Pool.spawn(Genome.open(NN_STRUCTURE_FILE), 20, std=8) # Create a pool of z's, starting around [0.5,0.5], should probably be better z_list = list(itertools.product(np.arange(0, max_wind, 1. / 20))) genomes = BasicGenome.from_list(z_list, 20) org_list = [Organism(genome) for genome in genomes] z_pool = Pool(org_list) for _ in xrange(epochs): pi_pool, z_pool, x_predict, reward_predict, MSE = do_evolution( pi_pool, z_pool, GP) # get scores reward_predictGrid = np.reshape(reward_predict, (len(pi_pool), len(z_pool))) ub = 1.96 * np.sqrt(MSE) ub_predictGrid = np.reshape(ub, (len(pi_pool), len(z_pool))) pi_score = score_pi(reward_predictGrid, ub_predictGrid) z_score = score_z(reward_predictGrid, ub_predictGrid) # add scores to organisms add_pi_scores(pi_pool, x_predict, pi_score) add_z_scores(z_pool, x_predict, z_score) # return current best pi and z pi_org = max(pi_pool) z_org = max(z_pool) return pi_org, z_org
from eonn.genome import Genome from eonn.organism import Pool from helicopter.helicopter import Helicopter, XcellTempest def hover(policy): """ Helicopter evaluation function. """ state, sum_error = heli.reset() while not heli.terminal: action = policy.propagate(state, 1) state, error = heli.update(action) sum_error += error return 1 / math.log(sum_error) if __name__ == '__main__': heli = Helicopter(XcellTempest.params, XcellTempest.noise_std) pool = Pool.spawn(Genome.open('baseline.net'), 20) # Set evolutionary parameters eonn.keep = 15 eonn.mutate_prob = 0.9 eonn.mutate_frac = 0.1 eonn.mutate_std = 0.8 eonn.mutate_repl = 0.15 # Evolve population pool = eonn.optimize(pool, hover) champion = max(pool) # Print results print '\nerror:', math.exp(1 / hover(champion.policy)) print '\ngenome:\n%s' % champion.genome
from eonn.organism import Pool def xor(policy, verbose=False): """ XOR evaluation function. """ err = 0.0 input = [(i, j) for i in range(2) for j in range(2)] for i in input: output = policy.propagate(i, 1); err += (output[0] - (i[0] ^ i[1]))**2 if verbose: print i, '-> %.4f (%d)' % (output[0], round(output[0])) return 1.0 / err if __name__ == '__main__': pool = Pool.spawn(Genome.open('xor.net'), 30) # Set evolutionary parameters eonn.KEEP = 1 eonn.MUTATE_PROB = 0.9 eonn.MUTATE_FRAC = 0.25 eonn.MUTATE_STD = 0.8 eonn.MUTATE_REPL = 0.2 # Evolve population pool = eonn.optimize(pool, xor) champion = max(pool) # Print results print '\noutput:' xor(champion.policy, True) print '\ngenome:\n%s' % champion.genome
from eonn.organism import Pool def xor(policy, verbose=False): """ XOR evaluation function. """ err = 0.0 input = [(i, j) for i in range(2) for j in range(2)] for i in input: output = policy.propagate(i, 1); err += (output[0] - (i[0] ^ i[1]))**2 if verbose: print i, '-> %.4f' % output[0] return 1.0 / err if __name__ == '__main__': pool = Pool.spawn(Genome.open('xor.net'), 30) # Set evolutionary parameters eonn.keep = 1 eonn.mutate_prob = 0.9 eonn.mutate_frac = 0.25 eonn.mutate_std = 0.8 eonn.mutate_repl = 0.2 # Evolve population pool = eonn.optimize(pool, xor) champion = max(pool) # Print results print '\noutput:' xor(champion.policy, True) print '\ngenome:\n%s' % champion.genome