def test_birth_death(self): epi = EpiModel(list("SIR")) R0 = 2 rho = 1 mu = 0.2 eta = R0 * rho with self.assertWarns(UserWarning): epi.set_processes([ ("S", "I", eta, "I", "I"), ("I", rho, "R"), (None, mu, "S"), ("S", mu, None), ("R", mu, None), ("I", mu, None), ]) epi.set_initial_conditions({'S': 0.8, 'I': 0.2}) t = [0, 1000] res = epi.integrate(t) assert (np.isclose(res['S'][-1], (mu + rho) / eta)) assert (np.isclose(res['I'][-1], mu / eta * (eta - mu - rho) / (mu + rho)))
def test_dynamic_birth(self): A = "A" epi = EpiModel([A]) epi.set_initial_conditions({A: 1}) with self.assertWarns(UserWarning): epi.set_processes([ (None, lambda t, y: 2 * t, A), ]) res = epi.integrate([0, 5]) assert (np.isclose(res[A][-1], 5**2 + 1))
def test_temporal_gillespie(self, plot=False): scl = 40 def R0(t, y=None): return 4 + np.cos(t * scl) S, I = list("SI") N = 100 rec = 1 model = EpiModel([S, I], N) model.set_processes([ (S, I, R0, I, I), (I, rec, S), ]) I0 = 1 S0 = N - I0 model.set_initial_conditions({ S: S0, I: I0, }) taus = [] N_sample = 10000 for sample in range(N_sample): tau, _ = model.get_time_leap_and_proposed_compartment_changes(0) taus.append(tau) I = lambda t: (4 * t + 1 / scl * np.sin(t * scl)) I2 = lambda t: I(t) * S0 * I0 / N + I0 * rec * t pdf = lambda t: (R0(t) * S0 * I0 / N + I0 * rec) * np.exp(-I2(t)) measured, bins = np.histogram(taus, bins=100, density=True) theory = [ np.exp(-I2(bins[i - 1])) - np.exp(-I2(bins[i])) for i in range(1, len(bins)) if measured[i - 1] > 0 ] experi = [ measured[i - 1] for i in range(1, len(bins)) if measured[i - 1] > 0 ] # make sure the kullback-leibler divergence is below some threshold if plot: # pragma: no cover import matplotlib.pyplot as pl pl.figure() pl.hist(taus, bins=100, density=True) tt = np.linspace(0, 1, 100) pl.plot(tt, pdf(tt)) pl.yscale('log') pl.figure() pl.hist(taus, bins=100, density=True) tt = np.linspace(0, 1, 100) pl.plot(tt, pdf(tt)) pl.show() assert (entropy(theory, experi) < 0.01)
def test_adding_linear_rates(self): epi = EpiModel(list("SEIR")) epi.set_processes([ ("E", 1.0, "I"), ]) epi.add_transition_processes([ ("I", 1.0, "R"), ]) linear_rates = [ConstantLinearRate(1.0, 1), ConstantLinearRate(1.0, 2)] linear_events = [np.array([0, -1, +1, 0]), np.array([0, 0, -1, +1.])] for r0, r1 in zip(linear_rates, epi.linear_rate_functions): assert (r0(0, [0.1, 0.2, 0.3, 0.4, 0.5]) == r1( 0, [0.1, 0.2, 0.3, 0.4, 0.5])) for e0, e1 in zip(linear_events, epi.linear_event_updates): assert (all([_e0 == _e1 for _e0, _e1 in zip(e0, e1)]))
def test_stochastic_well_mixed(self): S, E, I, R = list("SEIR") N = 75000 tmax = 100 model = EpiModel([S, E, I, R], N) model.set_processes([ (S, I, 2, E, I), (I, 1, R), (E, 1, I), ]) model.set_initial_conditions({S: N - 100, I: 100}) tt = np.linspace(0, tmax, 10000) result_int = model.integrate(tt) t, result_sim = model.simulate(tmax, sampling_dt=1, return_compartments=[S, R]) model = StochasticEpiModel([S, E, I, R], N) model.set_link_transmission_processes([ (I, S, 2, I, E), ]) model.set_node_transition_processes([ (I, 1, R), (E, 1, I), ]) model.set_random_initial_conditions({S: N - 100, I: 100}) t, result_sim2 = model.simulate(tmax, sampling_dt=1, return_compartments=[S, R]) for c, res in result_sim2.items(): #print(c, np.abs(1-res[-1]/result_int[c][-1])) #print(c, np.abs(1-res[-1]/result_sim[c][-1])) assert (np.abs(1 - res[-1] / result_int[c][-1]) < 0.05) assert (np.abs(1 - res[-1] / result_sim[c][-1]) < 0.05)
def test_adding_quadratic_processes(self): epi = EpiModel(list("SEIAR")) quadratic_rates = [ ConstantQuadraticRate(1.0, 2, 0), ConstantQuadraticRate(1.0, 3, 0) ] quadratic_events = [ np.array([-1, +1, 0, 0, 0.]), np.array([-1, +1, 0, 0, 0.]) ] epi.set_processes([ ("S", "I", 1.0, "I", "E"), ]) epi.add_transmission_processes([ ("S", "A", 1.0, "A", "E"), ]) for r0, r1 in zip(quadratic_rates, epi.quadratic_rate_functions): assert (r0(0, [0.1, 0.2, 0.3, 0.4, 0.5]) == r1( 0, [0.1, 0.2, 0.3, 0.4, 0.5])) for e0, e1 in zip(quadratic_events, epi.quadratic_event_updates): assert (all([_e0 == _e1 for _e0, _e1 in zip(e0, e1)]))
def test_birth_stochastics(self): A, B, C = list("ABC") epi = EpiModel([A, B, C], 10, correct_for_dynamical_population_size=True) epi.set_initial_conditions({A: 5, B: 5}) epi.set_processes([ (None, 1, A), (A, 1, B), (B, 1, None), ], allow_nonzero_column_sums=True) _, res = epi.simulate(200, sampling_dt=0.05) vals = np.concatenate([res[A][_ > 10], res[B][_ > 10]]) rv = poisson(vals.mean()) measured, bins = np.histogram(vals, bins=np.arange(10) - 0.5, density=True) theory = [ rv.pmf(i) for i in range(0, len(bins) - 1) if measured[i] > 0 ] experi = [ measured[i] for i in range(0, len(bins) - 1) if measured[i] > 0 ] # make sure the kullback-leibler divergence is below some threshold #for a, b in zip(theory, experi): # print(a,b) assert (entropy(theory, experi) < 1e-2) assert (np.median(res[A]) == 1)
from bfmplot import pl import numpy as np from epipack.numeric_epi_models import EpiModel from epipack import StochasticEpiModel from time import time S, E, I, R = list("SEIR") N = 200000 tmax = 50 model = EpiModel([S,E,I,R],N) model.set_processes([ ( S, I, 2, E, I ), ( I, 1, R), ( E, 1, I), ]) model.set_initial_conditions({S: N-100, I: 100}) tt = np.linspace(0,tmax,10000) result_int = model.integrate(tt) for c, res in result_int.items(): pl.plot(tt, res) start = time() t, result_sim = model.simulate(tmax,sampling_dt=1) end = time() print("numeric model needed", end-start, "s")
def test_temporal_gillespie_repeated_simulation(self, plot=False): scl = 40 def R0(t, y=None): return 4 + np.cos(t * scl) S, I = list("SI") N = 100 rec = 1 model = EpiModel([S, I], N) model.set_processes([ (S, I, R0, I, I), (I, rec, S), ]) I0 = 1 S0 = N - I0 model.set_initial_conditions({ S: S0, I: I0, }) taus = [] N_sample = 10000 if plot: from tqdm import tqdm else: tqdm = lambda x: x tt = np.linspace(0, 1, 100) for sample in tqdm(range(N_sample)): tau = None model.set_initial_conditions({ S: S0, I: I0, }) for _t in tt[1:]: time, result = model.simulate(_t, adopt_final_state=True) #print(time, result['I']) if result['I'][-1] != I0: tau = time[1] break #print() if tau is not None: taus.append(tau) I = lambda t: (4 * t + 1 / scl * np.sin(t * scl)) I2 = lambda t: I(t) * S0 * I0 / N + I0 * rec * t pdf = lambda t: (R0(t) * S0 * I0 / N + I0 * rec) * np.exp(-I2(t)) measured, bins = np.histogram(taus, bins=100, density=True) theory = [ np.exp(-I2(bins[i - 1])) - np.exp(-I2(bins[i])) for i in range(1, len(bins)) if measured[i - 1] > 0 ] experi = [ measured[i - 1] for i in range(1, len(bins)) if measured[i - 1] > 0 ] # make sure the kullback-leibler divergence is below some threshold if plot: import matplotlib.pyplot as pl pl.figure() pl.hist(taus, bins=100, density=True) tt = np.linspace(0, 1, 100) pl.plot(tt, pdf(tt)) pl.yscale('log') pl.figure() pl.hist(taus, bins=100, density=True) tt = np.linspace(0, 1, 100) pl.plot(tt, pdf(tt)) pl.show() assert (entropy(theory, experi) < 0.01)