예제 #1
0
def check_optimize_kwargs(**kwargs):
    valid_types = {
        "direction": str,
        "criterion": typing.Callable,
        "params": pd.DataFrame,
        "algorithm": (str, typing.Callable),
        "criterion_kwargs": dict,
        "constraints": list,
        "algo_options": dict,
        "derivative": (type(None), typing.Callable),
        "derivative_kwargs": dict,
        "criterion_and_derivative": (type(None), typing.Callable),
        "criterion_and_derivative_kwargs": dict,
        "numdiff_options": dict,
        "logging": (bool, Path),
        "log_options": dict,
        "error_handling": str,
        "error_penalty": dict,
        "cache_size": (int, float),
        "scaling": bool,
        "scaling_options": dict,
        "multistart": bool,
        "multistart_options": dict,
    }

    for arg in kwargs:
        if not isinstance(kwargs[arg], valid_types[arg]):
            raise TypeError(
                f"Argument '{arg}' is {kwargs[arg]} which is not {valid_types[arg]}."
            )

    if kwargs["direction"] not in ["minimize", "maximize"]:
        raise ValueError("diretion must be 'minimize' or 'maximize'")

    parcols = kwargs["params"].columns
    if "value" not in parcols:
        raise ValueError("The params DataFrame must contain a 'value' column.")

    if "lower" in parcols and "lower_bounds" not in parcols:
        msg = "There is a column 'lower' in params. Did you mean 'lower_bounds'?"
        warnings.warn(msg)

    if "upper" in parcols and "upper_bounds" not in parcols:
        msg = "There is a column 'upper' in in params. Did you mean 'upper_bounds'?"
        warnings.warn(msg)

    if kwargs["error_handling"] not in ["raise", "continue"]:
        raise ValueError("error_handling must be 'raise' or 'continue'")

    check_numdiff_options(kwargs["numdiff_options"], "optimization")
def check_optimize_kwargs(**kwargs):
    valid_types = {
        "direction": str,
        "criterion": typing.Callable,
        "algorithm": (str, typing.Callable),
        "criterion_kwargs": dict,
        "constraints": (list, dict),
        "algo_options": dict,
        "derivative": (type(None), typing.Callable, dict),
        "derivative_kwargs": dict,
        "criterion_and_derivative": (type(None), typing.Callable),
        "criterion_and_derivative_kwargs": dict,
        "numdiff_options": dict,
        "logging": (bool, Path),
        "log_options": dict,
        "error_handling": str,
        "error_penalty": dict,
        "cache_size": (int, float),
        "scaling": bool,
        "scaling_options": dict,
        "multistart": bool,
        "multistart_options": dict,
    }

    for arg in kwargs:
        if arg in valid_types:
            if not isinstance(kwargs[arg], valid_types[arg]):
                raise TypeError(
                    f"Argument '{arg}' must be {valid_types[arg]} not {kwargs[arg]}."
                )

    if kwargs["direction"] not in ["minimize", "maximize"]:
        raise ValueError("diretion must be 'minimize' or 'maximize'")

    if kwargs["error_handling"] not in ["raise", "continue"]:
        raise ValueError("error_handling must be 'raise' or 'continue'")

    check_numdiff_options(kwargs["numdiff_options"], "optimization")
예제 #3
0
def estimate_ml(
    loglike,
    params,
    optimize_options,
    *,
    lower_bounds=None,
    upper_bounds=None,
    constraints=None,
    logging=False,
    log_options=None,
    loglike_kwargs=None,
    numdiff_options=None,
    jacobian=None,
    jacobian_kwargs=None,
    hessian=None,
    hessian_kwargs=None,
    design_info=None,
):
    """Do a maximum likelihood (ml) estimation.

    This is a high level interface of our lower level functions for maximization,
    numerical differentiation and inference. It does the full workflow for maximum
    likelihood estimation with just one function call.

    While we have good defaults, you can still configure each aspect of each step
    via the optional arguments of this function. If you find it easier to do the
    maximization separately, you can do so and just provide the optimal parameters as
    ``params`` and set ``optimize_options=False``

    Args:
        loglike (callable): Likelihood function that takes a params (and potentially
            other keyword arguments) and returns a dictionary that has at least the
            entries "value" (a scalar float) and "contributions" (a 1d numpy array or
            pytree) with the log likelihood contribution per individual.
        params (pytree): A pytree containing the estimated or start parameters of the
            likelihood model. If the supplied parameters are estimated parameters, set
            optimize_options to False. Pytrees can be a numpy array, a pandas Series, a
            DataFrame with "value" column, a float and any kind of (nested) dictionary
            or list containing these elements. See :ref:`params` for examples.
        optimize_options (dict, str or False): Keyword arguments that govern the
            numerical optimization. Valid entries are all arguments of
            :func:`~estimagic.optimization.optimize.minimize` except for those that are
            passed explicilty to ``estimate_ml``. If you pass False as optimize_options
            you signal that ``params`` are already the optimal parameters and no
            numerical optimization is needed. If you pass a str as optimize_options it
            is used as the ``algorithm`` option.
        lower_bounds (pytree): A pytree with the same structure as params with lower
            bounds for the parameters. Can be ``-np.inf`` for parameters with no lower
            bound.
        upper_bounds (pytree): As lower_bounds. Can be ``np.inf`` for parameters with
            no upper bound.
        constraints (list, dict): List with constraint dictionaries or single dict.
            See :ref:`constraints`.
        logging (pathlib.Path, str or False): Path to sqlite3 file (which typically has
            the file extension ``.db``. If the file does not exist, it will be created.
            The dashboard can only be used when logging is used.
        log_options (dict): Additional keyword arguments to configure the logging.
            - "fast_logging": A boolean that determines if "unsafe" settings are used
            to speed up write processes to the database. This should only be used for
            very short running criterion functions where the main purpose of the log
            is a real-time dashboard and it would not be catastrophic to get a
            corrupted database in case of a sudden system shutdown. If one evaluation
            of the criterion function (and gradient if applicable) takes more than
            100 ms, the logging overhead is negligible.
            - "if_table_exists": (str) One of "extend", "replace", "raise". What to
            do if the tables we want to write to already exist. Default "extend".
            - "if_database_exists": (str): One of "extend", "replace", "raise". What to
            do if the database we want to write to already exists. Default "extend".
        loglike_kwargs (dict): Additional keyword arguments for loglike.
        numdiff_options (dict): Keyword arguments for the calculation of numerical
            derivatives for the calculation of standard errors. See
            :ref:`first_derivative` for details.
        jacobian (callable or None): A function that takes ``params`` and potentially
            other keyword arguments and returns the jacobian of loglike["contributions"]
            with respect to the params. Note that you only need to pass a Jacobian
            function if you have a closed form Jacobian. If you pass None, a numerical
            Jacobian will be calculated.
        jacobian_kwargs (dict): Additional keyword arguments for the Jacobian function.
        hessian (callable or None or False): A function that takes ``params`` and
            potentially other keyword arguments and returns the Hessian of
            loglike["value"] with respect to the params.  If you pass None, a numerical
            Hessian will be calculated. If you pass ``False``, you signal that no
            Hessian should be calculated. Thus, no result that requires the Hessian will
            be calculated.
        hessian_kwargs (dict): Additional keyword arguments for the Hessian function.
        design_info (pandas.DataFrame): DataFrame with one row per observation that
            contains some or all of the variables "psu" (primary sampling unit),
            "strata" and "fpc" (finite population corrector). See
            :ref:`robust_likelihood_inference` for details.

    Returns:
        LikelihoodResult: A LikelihoodResult object.

    """
    # ==================================================================================
    # Check and process inputs
    # ==================================================================================
    is_optimized = optimize_options is False

    if not is_optimized:
        if isinstance(optimize_options, str):
            optimize_options = {"algorithm": optimize_options}

        check_optimization_options(
            optimize_options,
            usage="estimate_ml",
            algorithm_mandatory=True,
        )

    jac_case = get_derivative_case(jacobian)
    hess_case = get_derivative_case(hessian)

    check_numdiff_options(numdiff_options, "estimate_ml")
    numdiff_options = {} if numdiff_options in (None,
                                                False) else numdiff_options
    loglike_kwargs = {} if loglike_kwargs is None else loglike_kwargs
    constraints = [] if constraints is None else constraints
    jacobian_kwargs = {} if jacobian_kwargs is None else jacobian_kwargs
    hessian_kwargs = {} if hessian_kwargs is None else hessian_kwargs

    # ==================================================================================
    # Calculate estimates via maximization (if necessary)
    # ==================================================================================

    if is_optimized:
        estimates = params
        opt_res = None
    else:
        opt_res = maximize(
            criterion=loglike,
            criterion_kwargs=loglike_kwargs,
            params=params,
            lower_bounds=lower_bounds,
            upper_bounds=upper_bounds,
            constraints=constraints,
            logging=logging,
            log_options=log_options,
            **optimize_options,
        )
        estimates = opt_res.params

    # ==================================================================================
    # Do first function evaluations at estimated parameters
    # ==================================================================================

    try:
        loglike_eval = loglike(estimates, **loglike_kwargs)
    except (KeyboardInterrupt, SystemExit):
        raise
    except Exception as e:
        msg = "Error while evaluating loglike at estimated params."
        raise InvalidFunctionError(msg) from e

    if callable(jacobian):
        try:
            jacobian_eval = jacobian(estimates, **jacobian_kwargs)
        except (KeyboardInterrupt, SystemExit):
            raise
        except Exception as e:
            msg = "Error while evaluating closed form jacobian at estimated params."
            raise InvalidFunctionError(msg) from e
    else:
        jacobian_eval = None

    if callable(hessian):
        try:
            hessian_eval = hessian(estimates, **hessian_kwargs)
        except (KeyboardInterrupt, SystemExit):
            raise
        except Exception as e:
            msg = "Error while evaluating closed form hessian at estimated params."
            raise InvalidFunctionError(msg) from e
    else:
        hessian_eval = None

    # ==================================================================================
    # Get the converter for params and function outputs
    # ==================================================================================

    converter, internal_estimates = get_converter(
        params=estimates,
        constraints=constraints,
        lower_bounds=lower_bounds,
        upper_bounds=upper_bounds,
        func_eval=loglike_eval,
        primary_key="contributions",
        scaling=False,
        scaling_options=None,
        derivative_eval=jacobian_eval,
    )

    # ==================================================================================
    # Calculate internal jacobian
    # ==================================================================================

    if jac_case == "closed-form":
        int_jac = converter.derivative_to_internal(jacobian_eval,
                                                   internal_estimates.values)
    elif jac_case == "numerical":

        def func(x):
            p = converter.params_from_internal(x)
            loglike_eval = loglike(p, **loglike_kwargs)["contributions"]
            out = converter.func_to_internal(loglike_eval)
            return out

        jac_res = first_derivative(
            func=func,
            params=internal_estimates.values,
            lower_bounds=internal_estimates.lower_bounds,
            upper_bounds=internal_estimates.upper_bounds,
            **numdiff_options,
        )

        int_jac = jac_res["derivative"]
    else:
        int_jac = None

    if constraints in [None, []
                       ] and jacobian_eval is None and int_jac is not None:
        loglike_contribs = loglike_eval
        if isinstance(loglike_contribs,
                      dict) and "contributions" in loglike_contribs:
            loglike_contribs = loglike_contribs["contributions"]

        jacobian_eval = matrix_to_block_tree(
            int_jac,
            outer_tree=loglike_contribs,
            inner_tree=estimates,
        )

    if jacobian_eval is None:
        _no_jac_reason = (
            "no closed form jacobian was provided and there are constraints")
    else:
        _no_jac_reason = None
    # ==================================================================================
    # Calculate internal Hessian
    # ==================================================================================

    if hess_case == "skip":
        int_hess = None
    elif hess_case == "numerical":

        def func(x):
            p = converter.params_from_internal(x)
            loglike_eval = loglike(p, **loglike_kwargs)["value"]
            out = converter.func_to_internal(loglike_eval)
            return out

        hess_res = second_derivative(
            func=func,
            params=internal_estimates.values,
            lower_bounds=internal_estimates.lower_bounds,
            upper_bounds=internal_estimates.upper_bounds,
            **numdiff_options,
        )
        int_hess = hess_res["derivative"]
    elif hess_case == "closed-form" and constraints:
        raise NotImplementedError(
            "Closed-form Hessians are not yet compatible with constraints.")
    elif hess_case == "closed-form":
        int_hess = block_tree_to_matrix(
            hessian_eval,
            outer_tree=params,
            inner_tree=params,
        )
    else:
        raise ValueError()

    if constraints in [None, []
                       ] and hessian_eval is None and int_hess is not None:
        hessian_eval = matrix_to_block_tree(
            int_hess,
            outer_tree=params,
            inner_tree=params,
        )

    if hessian_eval is None:
        if hess_case == "skip":
            _no_hess_reason = "the hessian calculation was explicitly skipped."
        else:
            _no_hess_reason = (
                "no closed form hessian was provided and there are constraints"
            )
    else:
        _no_hess_reason = None

    # ==================================================================================
    # create a LikelihoodResult object
    # ==================================================================================

    free_estimates = calculate_free_estimates(estimates, internal_estimates)

    res = LikelihoodResult(
        _params=estimates,
        _converter=converter,
        _optimize_result=opt_res,
        _jacobian=jacobian_eval,
        _no_jacobian_reason=_no_jac_reason,
        _hessian=hessian_eval,
        _no_hessian_reason=_no_hess_reason,
        _internal_jacobian=int_jac,
        _internal_hessian=int_hess,
        _design_info=design_info,
        _internal_estimates=internal_estimates,
        _free_estimates=free_estimates,
        _has_constraints=constraints not in [None, []],
    )

    return res
예제 #4
0
def estimate_msm(
    simulate_moments,
    empirical_moments,
    moments_cov,
    params,
    optimize_options,
    *,
    lower_bounds=None,
    upper_bounds=None,
    constraints=None,
    logging=False,
    log_options=None,
    simulate_moments_kwargs=None,
    weights="diagonal",
    numdiff_options=None,
    jacobian=None,
    jacobian_kwargs=None,
):
    """Do a method of simulated moments or indirect inference estimation.

    This is a high level interface for our lower level functions for minimization,
    numerical differentiation, inference and sensitivity analysis. It does the full
    workflow for MSM or indirect inference estimation with just one function call.

    While we have good defaults, you can still configure each aspect of each steps
    vial the optional arguments of this functions. If you find it easier to do the
    minimization separately, you can do so and just provide the optimal parameters as
    ``params`` and set ``optimize_options=False``.

    Args:
        simulate_moments (callable): Function that takes params and potentially other
            keyword arguments and returns a pytree with simulated moments. If the
            function returns a dict containing the key ``"simulated_moments"`` we only
            use the value corresponding to that key. Other entries are stored in the
            log database if you use logging.

        empirical_moments (pandas.Series): A pytree with the same structure as the
            result of ``simulate_moments``.
        moments_cov (pandas.DataFrame): A block-pytree containing the covariance
            matrix of the empirical moments. This is typically calculated with
            our ``get_moments_cov`` function.
        params (pytree): A pytree containing the estimated or start parameters of the
            model. If the supplied parameters are estimated parameters, set
            optimize_options to False. Pytrees can be a numpy array, a pandas Series, a
            DataFrame with "value" column, a float and any kind of (nested) dictionary
            or list containing these elements. See :ref:`params` for examples.
        optimize_options (dict, str or False): Keyword arguments that govern the
            numerical optimization. Valid entries are all arguments of
            :func:`~estimagic.optimization.optimize.minimize` except for those that can
            be passed explicitly to ``estimate_msm``.  If you pass False as
            ``optimize_options`` you signal that ``params`` are already
            the optimal parameters and no numerical optimization is needed. If you pass
            a str as optimize_options it is used as the ``algorithm`` option.
        lower_bounds (pytree): A pytree with the same structure as params with lower
            bounds for the parameters. Can be ``-np.inf`` for parameters with no lower
            bound.
        upper_bounds (pytree): As lower_bounds. Can be ``np.inf`` for parameters with
            no upper bound.
        simulate_moments_kwargs (dict): Additional keyword arguments for
            ``simulate_moments``.
        weights (str): One of "diagonal" (default), "identity" or "optimal".
            Note that "optimal" refers to the asymptotically optimal weighting matrix
            and is often not a good choice due to large finite sample bias.
        constraints (list, dict): List with constraint dictionaries or single dict.
            See :ref:`constraints`.
        logging (pathlib.Path, str or False): Path to sqlite3 file (which typically has
            the file extension ``.db``. If the file does not exist, it will be created.
            The dashboard can only be used when logging is used.
        log_options (dict): Additional keyword arguments to configure the logging.

            - "fast_logging" (bool):
                A boolean that determines if "unsafe" settings are used to speed up
                write processes to the database. This should only be used for very short
                running criterion functions where the main purpose of the log is a
                real-time dashboard and it would not be catastrophic to get a corrupted
                database in case of a sudden system shutdown. If one evaluation of the
                criterion function (and gradient if applicable) takes more than 100 ms,
                the logging overhead is negligible.
            - "if_table_exists" (str):
                One of "extend", "replace", "raise". What to do if the tables we want to
                write to already exist. Default "extend".
            - "if_database_exists" (str):
                One of "extend", "replace", "raise". What to do if the database we want
                to write to already exists. Default "extend".
        numdiff_options (dict): Keyword arguments for the calculation of numerical
            derivatives for the calculation of standard errors. See
            :ref:`first_derivative` for details. Note that by default we increase the
            step_size by a factor of 2 compared to the rule of thumb for optimal
            step sizes. This is because many msm criterion functions are slightly noisy.
        jacobian (callable): A function that take ``params`` and
            potentially other keyword arguments and returns the jacobian of
            simulate_moments with respect to the params.
        jacobian_kwargs (dict): Additional keyword arguments for the jacobian function.

        Returns:
            dict: The estimated parameters, standard errors and sensitivity measures
                and covariance matrix of the parameters.

    """
    # ==================================================================================
    # Check and process inputs
    # ==================================================================================

    if weights not in ["diagonal", "optimal"]:
        raise NotImplementedError(
            "Custom weighting matrices are not yet implemented.")

    is_optimized = optimize_options is False

    if not is_optimized:
        if isinstance(optimize_options, str):
            optimize_options = {"algorithm": optimize_options}

        check_optimization_options(
            optimize_options,
            usage="estimate_msm",
            algorithm_mandatory=True,
        )

    jac_case = get_derivative_case(jacobian)

    check_numdiff_options(numdiff_options, "estimate_msm")

    numdiff_options = {} if numdiff_options in (
        None, False) else numdiff_options.copy()
    if "scaling_factor" not in numdiff_options:
        numdiff_options["scaling_factor"] = 2

    weights, internal_weights = get_weighting_matrix(
        moments_cov=moments_cov,
        method=weights,
        empirical_moments=empirical_moments,
        return_type="pytree_and_array",
    )

    internal_moments_cov = block_tree_to_matrix(
        moments_cov,
        outer_tree=empirical_moments,
        inner_tree=empirical_moments,
    )

    constraints = [] if constraints is None else constraints
    jacobian_kwargs = {} if jacobian_kwargs is None else jacobian_kwargs
    simulate_moments_kwargs = ({} if simulate_moments_kwargs is None else
                               simulate_moments_kwargs)

    # ==================================================================================
    # Calculate estimates via minimization (if necessary)
    # ==================================================================================

    if is_optimized:
        estimates = params
        opt_res = None
    else:
        funcs = get_msm_optimization_functions(
            simulate_moments=simulate_moments,
            empirical_moments=empirical_moments,
            weights=weights,
            simulate_moments_kwargs=simulate_moments_kwargs,
            # Always pass None because we do not support closed form jacobians during
            # optimization yet. Otherwise we would get a NotImplementedError
            jacobian=None,
            jacobian_kwargs=jacobian_kwargs,
        )

        opt_res = minimize(
            lower_bounds=lower_bounds,
            upper_bounds=upper_bounds,
            constraints=constraints,
            logging=logging,
            log_options=log_options,
            params=params,
            **funcs,  # contains the criterion func and possibly more
            **optimize_options,
        )

        estimates = opt_res.params

    # ==================================================================================
    # do first function evaluations
    # ==================================================================================

    try:
        sim_mom_eval = simulate_moments(estimates, **simulate_moments_kwargs)
    except (KeyboardInterrupt, SystemExit):
        raise
    except Exception as e:
        msg = "Error while evaluating simulate_moments at estimated params."
        raise InvalidFunctionError(msg) from e

    if callable(jacobian):
        try:
            jacobian_eval = jacobian(estimates, **jacobian_kwargs)
        except (KeyboardInterrupt, SystemExit):
            raise
        except Exception as e:
            msg = "Error while evaluating derivative at estimated params."
            raise InvalidFunctionError(msg) from e

    else:
        jacobian_eval = None

    # ==================================================================================
    # get converter for params and function outputs
    # ==================================================================================

    def helper(params):
        raw = simulate_moments(params, **simulate_moments_kwargs)
        if isinstance(raw, dict) and "simulated_moments" in raw:
            out = {"contributions": raw["simulated_moments"]}
        else:
            out = {"contributions": raw}
        return out

    if isinstance(sim_mom_eval, dict) and "simulated_moments" in sim_mom_eval:
        func_eval = {"contributions": sim_mom_eval["simulated_moments"]}
    else:
        func_eval = {"contributions": sim_mom_eval}

    converter, internal_estimates = get_converter(
        params=estimates,
        constraints=constraints,
        lower_bounds=lower_bounds,
        upper_bounds=upper_bounds,
        func_eval=func_eval,
        primary_key="contributions",
        scaling=False,
        scaling_options=None,
        derivative_eval=jacobian_eval,
    )

    # ==================================================================================
    # Calculate internal jacobian
    # ==================================================================================

    if jac_case == "closed-form":
        x = converter.params_to_internal(estimates)
        int_jac = converter.derivative_to_internal(jacobian_eval, x)
    else:

        def func(x):
            p = converter.params_from_internal(x)
            sim_mom_eval = helper(p)
            out = converter.func_to_internal(sim_mom_eval)
            return out

        int_jac = first_derivative(
            func=func,
            params=internal_estimates.values,
            lower_bounds=internal_estimates.lower_bounds,
            upper_bounds=internal_estimates.upper_bounds,
            **numdiff_options,
        )["derivative"]

    # ==================================================================================
    # Calculate external jac (if no constraints and not closed form )
    # ==================================================================================

    if constraints in [None, []
                       ] and jacobian_eval is None and int_jac is not None:
        jacobian_eval = matrix_to_block_tree(
            int_jac,
            outer_tree=empirical_moments,
            inner_tree=estimates,
        )

    if jacobian_eval is None:
        _no_jac_reason = (
            "no closed form jacobian was provided and there are constraints")
    else:
        _no_jac_reason = None

    # ==================================================================================
    # Create MomentsResult
    # ==================================================================================

    free_estimates = calculate_free_estimates(estimates, internal_estimates)

    res = MomentsResult(
        _params=estimates,
        _weights=weights,
        _converter=converter,
        _internal_weights=internal_weights,
        _internal_moments_cov=internal_moments_cov,
        _internal_jacobian=int_jac,
        _jacobian=jacobian_eval,
        _no_jacobian_reason=_no_jac_reason,
        _empirical_moments=empirical_moments,
        _internal_estimates=internal_estimates,
        _free_estimates=free_estimates,
        _has_constraints=constraints not in [None, []],
    )
    return res
예제 #5
0
    check_optimization_options(
        optimize_options,
        usage="estimate_ml",
        algorithm_mandatory=True,
    )

    jac_case = get_derivative_case(jacobian)
    hess_case = get_derivative_case(hessian)

    check_is_optimized_and_derivative_case(is_optimized, jac_case)
    check_is_optimized_and_derivative_case(is_optimized, hess_case)

    cov_cases = _get_cov_cases(jac_case, hess_case, design_info)

    check_numdiff_options(numdiff_options, "estimate_ml")
    numdiff_options = {} if numdiff_options in (None,
                                                False) else numdiff_options

    constraints = [] if constraints is None else constraints

    processed_constraints, _ = process_constraints(constraints, params)

    # ==================================================================================
    # Calculate estimates via maximization (if necessary)
    # ==================================================================================

    if is_optimized:
        estimates = params
    else:
        opt_res = maximize(
예제 #6
0
def test_check_and_process_numdiff_options_with_invalid_entries():
    with pytest.raises(ValueError):
        check_numdiff_options({"func": lambda x: x}, "estimate_msm")