def __init__(self, num_ownship_states, x0, P0, buffer_capacity, meas_space_table, delta_codebook_table, delta_multipliers, asset2id, my_name, default_meas_variance): """Constructor Arguments: num_ownship_states {int} -- Number of ownship states for each asset x0 {np.ndarray} -- initial states P0 {np.ndarray} -- initial uncertainty buffer_capacity {int} -- capacity of measurement buffer meas_space_table {dict} -- Hash that stores how much buffer space a measurement takes up. Str (meas type) -> int (buffer space) delta_codebook_table {dict} -- Hash that stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger) delta_multipliers {list} -- List of delta trigger multipliers asset2id {dict} -- Hash to get the id number of an asset from the string name my_name {str} -- Name to loopkup in asset2id the current asset's ID# default_meas_variance {dict} -- Hash to get measurement variance """ self.meas_ledger = [] self.asset2id = asset2id self.my_name = my_name self.default_meas_variance = default_meas_variance self.filter = ETFilter(asset2id[my_name], num_ownship_states, 3, x0, P0, True) # Remember for instantiating new LedgerFilters self.num_ownship_states = num_ownship_states self.buffer_capacity = buffer_capacity self.meas_space_table = meas_space_table self.last_update_time = None
def __init__(self, num_ownship_states, x0, P0, delta_codebook_table, delta_multiplier, is_main_filter, asset2id, my_name, default_meas_variance, common_filter=None): """Constructor Arguments: num_ownship_states {int} -- Number of ownship states for each asset x0 {np.ndarray} -- initial states P0 {np.ndarray} -- initial uncertainty delta_codebook_table {dict} -- Hash thatp stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger) delta_multiplier {float} -- Delta trigger constant multiplier for this filter is_main_filter {bool} -- Is this filter a common or main filter (if main the meas buffer does not matter) asset2id {dict} -- Hash to get the id number of an asset from the string name my_name {str} -- Name to loopkup in asset2id the current asset's ID# default_meas_variance {dict} -- Hash to get measurement variance common_filter {dict} -- asset to common ETFilter """ if delta_multiplier <= 0: raise ValueError("Delta Multiplier must be greater than 0") self.num_ownship_states = num_ownship_states self.delta_codebook_table = delta_codebook_table self.delta_multiplier = delta_multiplier self.is_main_filter = is_main_filter if self.is_main_filter: assert common_filter is not None self.filter = ETFilter_Main(asset2id[my_name], num_ownship_states, 3, x0, P0, True, {"": common_filter}) else: self.filter = ETFilter(asset2id[my_name], num_ownship_states, 3, x0, P0, True) self.original_filter = deepcopy(self.filter) self.asset2id = asset2id self.my_name = my_name self.default_meas_variance = default_meas_variance # Initialize ledger with first update self.ledger = {} self._add_block() self.explicit_count = 0 self.meas_types_received = []
def __init__(self, num_ownship_states, x0, P0, buffer_capacity, meas_space_table, missed_meas_tolerance_table, delta_codebook_table, delta_multiplier, is_main_filter, my_id): """Constructor Arguments: num_ownship_states {int} -- Number of ownship states for each asset x0 {np.ndarray} -- initial states P0 {np.ndarray} -- initial uncertainty buffer_capacity {int} -- capacity of measurement buffer meas_space_table {dict} -- Hash that stores how much buffer space a measurement takes up. Str (meas type) -> int (buffer space) Must have key entries "bookend", "bookstart" to indicate space needed for measurement implicitness filling in missed_meas_tolerance_table {dict} -- Hash that determines how many measurements of each type do we need to miss before indicating a bookend delta_codebook_table {dict} -- Hash thatp stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger) delta_multiplier {float} -- Delta trigger constant multiplier for this filter is_main_filter {bool} -- Is this filter a common or main filter (if main the meas buffer does not matter) my_id {int} -- ID# of the current asset (typically 0) """ if delta_multiplier <= 0: raise ValueError("Delta Multiplier must be greater than 0") self.original_estimate = [deepcopy(x0), deepcopy(P0)] self.delta_codebook_table = delta_codebook_table self.delta_multiplier = delta_multiplier self.buffer = MeasurementBuffer(meas_space_table, buffer_capacity) self.missed_meas_tolerance_table = missed_meas_tolerance_table self.is_main_filter = is_main_filter self.filter = ETFilter(my_id, num_ownship_states, 3, x0, P0, True) # Initialize Ledgers self.ledger_meas = [] # In internal measurement form self.ledger_control = [ ] ## elements with [u, Q, time_delta, use_control_input] self.ledger_ci = [ ] ## Covariance Intersection ledger, each element is of form [x, P] self.ledger_update_times = [ ] ## Update times of when correction step executed self.expected_measurements = { } # When we don't receive an expected measurement we need to insert a "bookend" into the measurement buffer # Initialize first element of ledgers self.ledger_meas.append([]) self.ledger_control.append([]) self.ledger_ci.append([])
class LedgerFilter: """Records filter inputs and makes available an event triggered buffer. """ def __init__(self, num_ownship_states, x0, P0, delta_codebook_table, delta_multiplier, is_main_filter, asset2id, my_name, default_meas_variance, common_filter=None): """Constructor Arguments: num_ownship_states {int} -- Number of ownship states for each asset x0 {np.ndarray} -- initial states P0 {np.ndarray} -- initial uncertainty delta_codebook_table {dict} -- Hash thatp stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger) delta_multiplier {float} -- Delta trigger constant multiplier for this filter is_main_filter {bool} -- Is this filter a common or main filter (if main the meas buffer does not matter) asset2id {dict} -- Hash to get the id number of an asset from the string name my_name {str} -- Name to loopkup in asset2id the current asset's ID# default_meas_variance {dict} -- Hash to get measurement variance common_filter {dict} -- asset to common ETFilter """ if delta_multiplier <= 0: raise ValueError("Delta Multiplier must be greater than 0") self.num_ownship_states = num_ownship_states self.delta_codebook_table = delta_codebook_table self.delta_multiplier = delta_multiplier self.is_main_filter = is_main_filter if self.is_main_filter: assert common_filter is not None self.filter = ETFilter_Main(asset2id[my_name], num_ownship_states, 3, x0, P0, True, {"": common_filter}) else: self.filter = ETFilter(asset2id[my_name], num_ownship_states, 3, x0, P0, True) self.original_filter = deepcopy(self.filter) self.asset2id = asset2id self.my_name = my_name self.default_meas_variance = default_meas_variance # Initialize ledger with first update self.ledger = {} self._add_block() self.explicit_count = 0 self.meas_types_received = [] def change_common_filter(self, common_filter): self.filter.common_filters = {"": common_filter} def _add_block(self): next_step = len(self.ledger) + 1 self.ledger[next_step] = { "meas": [], "time": None, "u": None, "Q": None, "nav_mean": None, "nav_cov": None, "x_hat_prior": deepcopy(self.filter.x_hat), "P_prior": deepcopy(self.filter.P) } def _get_meas_ledger_index(self, meas_time): for i in range(1, len(self.ledger) + 1): ledger_time = self.ledger[i]["time"] if ledger_time is None: return i elif meas_time < ledger_time: return i def _is_shareable(self, src_asset, meas_type): if not self.is_main_filter and src_asset == self.my_name: for m in MEASUREMENT_TYPES_SHARED: if m in meas_type: return True return False def add_meas(self, ros_meas, output=False): """Adds and records a measurement to the filter Arguments: ros_meas {etddf.Measurement.msg} -- The measurement in ROS form """ msg_id = self._get_meas_identifier(ros_meas) # Main filter fuses all measurements if self.is_main_filter: pass elif ros_meas.src_asset != self.my_name: pass elif self._is_shareable(ros_meas.src_asset, ros_meas.meas_type): pass elif msg_id in self.meas_types_received: return else: # Don't fuse (e.g. depth, sonar_z) return -1 self.meas_types_received.append(msg_id) ledger_ind = self._get_meas_ledger_index(ros_meas.stamp) # Check for Event-Triggering if self._is_shareable(ros_meas.src_asset, ros_meas.meas_type): if "implicit" not in ros_meas.meas_type: src_id = self.asset2id[ros_meas.src_asset] measured_id = self.asset2id[ros_meas.measured_asset] ros_meas.et_delta = self._get_meas_et_delta(ros_meas.meas_type) meas = get_internal_meas_from_ros_meas(ros_meas, src_id, measured_id) implicit, innovation = self.filter.check_implicit(meas) if implicit: ros_meas.meas_type += "_implicit" # print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ IMPLICIT @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") # print(ros_meas) # print(vars(meas)) # print(self.filter.x_hat) else: self.explicit_count += 1 if output: expected = meas.data - innovation meas_id = self._get_meas_identifier(ros_meas) last_update_time = self.ledger[len(self.ledger) - 1]["time"] # print("Explicit {} {} : expected: {}, got: {}".format(last_update_time.to_sec(), meas_id, expected, meas.data)) # print(self.meas_types_received) # print(self.filter.x_hat.T) # print("Explicit #{} {} : {}".format(self.explicit_count, self.delta_multiplier, ros_meas.meas_type)) # print(ros_meas) # print(vars(meas)) # print(self.filter.x_hat) # Append to the ledger self.ledger[ledger_ind]["meas"].append(ros_meas) return ledger_ind @staticmethod def run_covariance_intersection(xa, Pa, xb, Pb): """Runs covariance intersection on the two estimates A and B Arguments: xa {np.ndarray} -- mean of A Pa {np.ndarray} -- covariance of A xb {np.ndarray} -- mean of B Pb {np.ndarray} -- covariance of B Returns: c_bar {np.ndarray} -- intersected estimate Pcc {np.ndarray} -- intersected covariance """ Pa_inv = np.linalg.inv(Pa) Pb_inv = np.linalg.inv(Pb) fxn = lambda omega: np.trace( np.linalg.inv(omega * Pa_inv + (1 - omega) * Pb_inv)) omega_optimal = scipy.optimize.minimize_scalar(fxn, bounds=(0, 1), method="bounded").x # print("Omega: {}".format(omega_optimal)) # We'd expect a value of 1 Pcc = np.linalg.inv(omega_optimal * Pa_inv + (1 - omega_optimal) * Pb_inv) c_bar = Pcc.dot(omega_optimal * Pa_inv.dot(xa) + (1 - omega_optimal) * Pb_inv.dot(xb)) jump = max([np.linalg.norm(c_bar - xa), np.linalg.norm(c_bar - xb)]) if jump > 10: # Think this is due to a floating point error in the inversion print("!!!!!!!!!!! BIG JUMP!!!!!!!") print(xa) print(xb) print(c_bar) print(omega_optimal) print(Pa) print(Pb) print(Pcc) return c_bar.reshape(-1, 1), Pcc def psci(self, x_prior, P_prior, c_bar, Pcc): """ Partial State Update all other states of the filter using the result of CI Arguments: x_prior {np.ndarray} -- This filter's prior estimate (over common states) P_prior {np.ndarray} -- This filter's prior covariance c_bar {np.ndarray} -- intersected estimate Pcc {np.ndarray} -- intersected covariance Returns: None Updates self.main_filter.filter.x_hat and P, the delta tier's primary estimate """ # Full state estimates x = self.filter.x_hat P = self.filter.P D_inv = np.linalg.inv(Pcc) - np.linalg.inv(P_prior) D_inv_d = np.dot(np.linalg.inv(Pcc), c_bar) - np.dot( np.linalg.inv(P_prior), x_prior) my_id = self.asset2id[self.my_name] begin_ind = my_id * self.num_ownship_states end_ind = (my_id + 1) * self.num_ownship_states info_vector = np.zeros(x.shape) info_vector[begin_ind:end_ind] = D_inv_d info_matrix = np.zeros(P.shape) info_matrix[begin_ind:end_ind, begin_ind:end_ind] = D_inv posterior_cov = np.linalg.inv(np.linalg.inv(P) + info_matrix) tmp = np.dot(np.linalg.inv(P), x) + info_vector posterior_state = np.dot(posterior_cov, tmp) self.filter.x_hat = posterior_state self.filter.P = posterior_cov def intersect(self, x, P): """Runs covariance intersection with main filter's estimate Arguments: x {np.ndarray} -- other filter's mean P {np.ndarray} -- other filter's covariance Returns: c_bar {np.ndarray} -- intersected estimate Pcc {np.ndarray} -- intersected covariance """ my_id = self.asset2id[self.my_name] # Slice out overlapping states in main filter begin_ind = my_id * self.num_ownship_states end_ind = (my_id + 1) * self.num_ownship_states x_prior = self.filter.x_hat[begin_ind:end_ind].reshape(-1, 1) P_prior = self.filter.P[begin_ind:end_ind, begin_ind:end_ind] P_prior = P_prior.reshape(self.num_ownship_states, self.num_ownship_states) c_bar, Pcc = LedgerFilter.run_covariance_intersection( x, P, x_prior, P_prior) # Update main filter states if Pcc.shape != self.filter.P.shape: self.psci(x_prior, P_prior, c_bar, Pcc) # self.filter.x_hat[begin_ind:end_ind] = c_bar # self.filter.P[begin_ind:end_ind,begin_ind:end_ind] = Pcc else: self.filter.x_hat = c_bar self.filter.P = Pcc return c_bar, Pcc def reset_estimate(self): self.filter.x_hat = self.ledger[len(self.ledger)]["x_hat_prior"] self.filter.P = self.ledger[len(self.ledger)]["P_prior"] def update(self, update_time, u, Q, nav_mean, nav_cov): """Execute Prediction & Correction Step in filter Arguments: update_time {time} -- Update time to record on the ledger update times u {np.ndarray} -- control input (num_ownship_states / 2, 1) Q {np.ndarray} -- motion/process noise (nstates, nstates) nav filter mean nav filter covariance """ # self.ledger[len(self.ledger)]["x_hat_prior"] = # self.ledger[len(self.ledger)]["P_prior"] = deepcopy(self.filter.P) self.meas_types_received = [] # Run prediction step if len(self.ledger) > 1: time_delta = (update_time - self.ledger[len(self.ledger) - 1]["time"]).to_sec() self.filter.predict(u, Q, time_delta, use_control_input=False) # Add all measurements # if self.my_name != "surface": # print("### {} ###".format(self.my_name)) for ros_meas in self.ledger[len(self.ledger)]["meas"]: src_id = self.asset2id[ros_meas.src_asset] measured_id = self.asset2id[ros_meas.measured_asset] meas = get_internal_meas_from_ros_meas(ros_meas, src_id, measured_id) # if self.my_name != "surface": # print(self._get_meas_identifier(ros_meas)) self.filter.add_meas(meas) # Run correction step on filter self.filter.correct() # Intersect c_bar, Pcc = None, None if self.is_main_filter and (nav_mean is not None and nav_cov is not None): # print("***************************8 Intersecting **********************************") c_bar, Pcc = self.intersect(nav_mean, nav_cov) # Save all variables of this update self.ledger[len(self.ledger)]["time"] = update_time self.ledger[len(self.ledger)]["u"] = u self.ledger[len(self.ledger)]["Q"] = Q self.ledger[len(self.ledger)]["nav_mean"] = nav_mean self.ledger[len(self.ledger)]["nav_cov"] = nav_cov self._add_block() return c_bar, Pcc def convert(self, delta_multiplier): """Converts the filter to have a new delta multiplier Arguments: delta_multiplier {float} -- the delta multiplier of the new filter """ self.delta_multiplier = delta_multiplier def _get_meas_identifier(self, msg, undo=False): """ Returns a unique string for that msg sonar_x (implicit/explicit) me to agent0 --> sonar_x_me_agent0 if undo, msg is a "msg_id"/previous call to this function """ if not undo: meas_type = msg.meas_type if "implicit" in meas_type: meas_type = meas_type.split("_implicit")[0] elif "burst" in meas_type: meas_type = meas_type.split("_burst")[0] identifier = "{}-{}-{}".format(meas_type, msg.src_asset, msg.measured_asset) return identifier else: # Go from msg (msg_id) ==> ros msg meas_type, src_asset, measured_asset = msg.split("-") m = Measurement() m.meas_type = meas_type m.src_asset = src_asset m.measured_asset = measured_asset return m def _get_shareable_meas_dict(self, last_shared_index): """ Returns a measurement dict msg_id ==> list of times the msg appears ==> list of explicit measurements """ meas_dict = {} explicit_count = 0 for i in range(last_shared_index, len(self.ledger)): for meas in self.ledger[i]["meas"]: if self._is_shareable(meas.src_asset, meas.meas_type): msg_id = self._get_meas_identifier(meas) if msg_id not in meas_dict: meas_dict[msg_id] = {"times": [], "explicit": []} meas_dict[msg_id]["times"].append(meas.stamp) if "implicit" not in meas.meas_type: meas_dict[msg_id]["explicit"].append(meas) explicit_count += 1 # print("Delta: {} | Explicit Count creating meas dict: {}".format(self.delta_multiplier, explicit_count)) return meas_dict def _get_meas_dict_from_buffer(self, buffer): """ Returns a measurement dictionary to assist with recreating the measurement sequence msg_id ==> list of burst msgs ==> list of epxlicit measurements """ meas_dict = {} for meas in buffer: msg_id = self._get_meas_identifier(meas) if msg_id not in meas_dict: meas_dict[msg_id] = {"bursts": [], "explicit": []} if "burst" in meas.meas_type: meas_dict[msg_id]["bursts"].append(meas) else: meas_dict[msg_id]["explicit"].append(meas) return meas_dict def _get_bursts(self, times, threshold=3): last_time = None bursts = [[]] for t in times: if last_time is None or (t - last_time).to_sec() < threshold: bursts[-1].append(t) else: bursts.append([t]) last_time = t return bursts def _make_burst_msg(self, msg_id, value, start_time, avg_latency_s): meas = self._get_meas_identifier(msg_id, undo=True) meas.meas_type += "_burst" assert avg_latency_s < 10 # Needed for way we are sending meas.data = value + (avg_latency_s / 10.0) meas.stamp = start_time return meas def _expand_burst_msg(self, burst_msg): """ Turn a burst msg into many implicit measurements """ assert "burst" in burst_msg.meas_type burst_list = [] num_msgs = int(burst_msg.data) avg_latency = (burst_msg.data - int(burst_msg.data)) * 10 # burst_msg.meas_type = burst_msg.meas_type.split("_burst")[0] msg_id = self._get_meas_identifier(burst_msg) # print("Reconstructed msg_id: {}".format(msg_id)) # print("Avg latency: {}".format(avg_latency)) # print("Num msgs: {}".format(num_msgs)) for i in range(num_msgs): new_msg = self._get_meas_identifier(msg_id, undo=True) new_msg.stamp = burst_msg.stamp + rospy.Duration(i * avg_latency) new_msg.meas_type += "_implicit" new_msg.variance = burst_msg.variance new_msg.et_delta = burst_msg.et_delta burst_list.append(new_msg) return burst_list, avg_latency def _add_variances(self, buffer): for msg in buffer: if "_burst" in msg.meas_type: meas_type = msg.meas_type.split("_burst")[0] else: meas_type = msg.meas_type msg.variance = self.default_meas_variance[meas_type] * 2.0 return buffer def _add_etdeltas(self, buffer, delta_multiplier): for msg in buffer: if "_burst" in msg.meas_type: meas_type = msg.meas_type.split("_burst")[0] msg.et_delta = self.delta_codebook_table[ meas_type] * delta_multiplier else: msg.et_delta = self.delta_codebook_table[ msg.meas_type] * delta_multiplier # print(buffer) return buffer def pull_buffer(self, last_shared_index): """Returns the event triggered buffer Returns: list -- the flushed buffer of measurements """ buffer = [] explicit_buffer = [] # report_implicit_count = 0 # report_last_shared_time = self.ledger[last_shared_index]["time"] # report_now_last_shared_time = rospy.get_rostime() # report_duration = report_now_last_shared_time - report_last_shared_time meas_dict = self._get_shareable_meas_dict(last_shared_index) print("PULLING BUFFER: current index {}".format(len(self.ledger))) for msg_id in meas_dict: times = meas_dict[msg_id]["times"] # Should be sorted explicit = meas_dict[msg_id]["explicit"] bursts = self._get_bursts(times) # print("Delta: {} | Msg id: {} | Num Explicit: {}".format(self.delta_multiplier, msg_id, len(explicit))) # print("size(times): {}".format(len(times))) # print("size(explicit): {}".format(len(explicit))) # print("bursts: {}".format(bursts)) if len(bursts) > 1: print("ERROR MULTIPLE BURSTS DETECTED") print(bursts) b = bursts[-1] # Only use last burst b_numpy = np.array(b) start_time = b[0] # print("Constructing msg: {}".format(msg_id)) if len(b) > 1: cumdiff = b_numpy[ 1:] - b_numpy[:-1] # Get the adjacent difference latencies = [lat.to_sec() for lat in cumdiff] mean_lat = np.mean(latencies) # print("Avg latency: {}".format(mean_lat)) else: mean_lat = 0 # print("Num msgs: {}".format(len(b))) burst_msg = self._make_burst_msg(msg_id, len(b), start_time, mean_lat) buffer.append(burst_msg) explicit_buffer.extend(explicit) # report_implicit_count += (len(b) - len(explicit)) meas_sort = lambda x: x.stamp explicit_buffer.sort(key=meas_sort, reverse=True) buffer.extend(explicit_buffer) # REPORT # print("******* BUFFER SHARING REPORT FOR {} w/ Delta {}*******".format(self.my_name, self.delta_multiplier)) # print("Last shared time: {}".format(report_last_shared_time.to_sec())) # print("Sharing duration: {}".format(report_duration.to_sec())) # print("Sharing time now: {}".format(report_now_last_shared_time.to_sec())) # print("Implicit cnt: {}".format(report_implicit_count)) # print("Explicit cnt: {}".format(len(explicit_buffer))) return buffer # Delta-Tiering # return explicit_buffer # N-most recent def fillin_buffer(self, buffer, delta_multiplier): # Add variances & et-deltas buffer = self._add_variances(buffer) buffer = self._add_etdeltas(buffer, delta_multiplier) # Delta-tiering new_buffer = [] implicit_cnt, explicit_cnt = 0, 0 # N-most recent # new_buffer = buffer # implicit_cnt, explicit_cnt = 0, len(buffer) meas_dict = self._get_meas_dict_from_buffer(buffer) for msg_id in meas_dict: bursts = meas_dict[msg_id]["bursts"] explicit = meas_dict[msg_id]["explicit"] meas_sort = lambda x: x.stamp explicit.sort(key=meas_sort) # print("Explicit meas:") # print(explicit) all_implicit = [] for b in bursts: implicit_meas, avg_latency = self._expand_burst_msg(b) all_implicit.extend(implicit_meas) all_implicit.sort(key=meas_sort) # Match all of the explicit to their corresponding implicit placeholders: # This works by first aligning the explicit with the last measurements in the implicit array # Then move the first explicit forward in the implicit array to the best match # Then proceed with each explicit sequentially, moving it forward and matching to the remaining best fits # assert len(all_implicit) >= len(explicit) # Uneeded with following code left_over_explicit = [] if len(all_implicit) < len(explicit): # We dropped a burst msg first_implicit, final_implicit = all_implicit[0], all_implicit[ -1] for m in explicit: if m.stamp < first_implicit.stamp or m.stamp > final_implicit.stamp: left_over_explicit.append(m) for m in left_over_explicit: explicit.remove(m) size_diff = len(all_implicit) - len(explicit) indices = [x + size_diff for x in range(len(explicit))] for i in range(len(explicit)): start_ind = 0 if i == 0 else indices[i - 1] end_ind = indices[i] if start_ind == end_ind: break search_times = [ x.stamp for x in all_implicit[start_ind:end_ind] ] diffs = [ abs((x - explicit[i].stamp).to_sec()) for x in search_times ] best_ind = np.argmin(diffs) + start_ind indices[i] = best_ind # print("Indices: {}".format(indices)) for i in range(len(indices)): all_implicit[indices[i]] = explicit[i] implicit_cnt += (len(all_implicit) - len(indices)) explicit_cnt += len(indices) + len(left_over_explicit) # print(all_implicit) new_buffer.extend(all_implicit) new_buffer.extend(left_over_explicit) return new_buffer def catch_up(self, start_ind): """ Rewinds the filter and brings it up to the current momment in time """ if self.is_main_filter: print("################## Starting Index: {} ################". format(start_ind)) self.explicit_count = 0 ledger = deepcopy(self.ledger) # print("DT: {}".format(self.delta_multiplier)) # print(ledger[start_ind]["P_prior"]) if ledger[start_ind]["x_hat_prior"] is None or ledger[start_ind][ "P_prior"] is None: start_ind -= 1 # print("Start index: {}".format(start_ind)) # Reset the ledger self.ledger = {} for i in range(1, start_ind): self.ledger[i] = ledger[i] self._add_block() # Reset the filter # self.filter = deepcopy(self.original_filter) self.filter.x_hat = ledger[start_ind]["x_hat_prior"] self.filter.P = ledger[start_ind]["P_prior"] for i_step in range(start_ind, len(ledger)): meas_list = ledger[i_step]["meas"] update_time = ledger[i_step]["time"] u = ledger[i_step]["u"] Q = ledger[i_step]["Q"] nav_mean = ledger[i_step]["nav_mean"] nav_cov = ledger[i_step]["nav_cov"] for meas in meas_list: self.add_meas(meas) self.update(update_time, u, Q, nav_mean, nav_cov) def get_asset_estimate(self, asset): asset_id = self.asset2id[asset] begin_ind = asset_id * self.num_ownship_states end_ind = (asset_id + 1) * self.num_ownship_states asset_mean = self.filter.x_hat[begin_ind:end_ind, 0] asset_unc = self.filter.P[begin_ind:end_ind, begin_ind:end_ind] return deepcopy(asset_mean), deepcopy(asset_unc) def _get_meas_et_delta(self, meas_type): """Gets the delta trigger for the measurement Arguments: meas_type {str} -- The measurement type Raises: KeyError: ros_meas.meas_type not found in the delta_codebook_table Returns: float -- the delta trigger scaled by the filter's delta multiplier """ # Match root measurement type e.g. "modem_range" with "modem_range_implicit" for mt in self.delta_codebook_table: if mt in meas_type: return self.delta_codebook_table[mt] * self.delta_multiplier raise KeyError("Measurement Type " + meas_type + " not found in self.delta_codebook_table")
class LedgerFilter: """Records filter inputs and makes available an event triggered buffer. """ def __init__(self, num_ownship_states, x0, P0, buffer_capacity, meas_space_table, missed_meas_tolerance_table, delta_codebook_table, delta_multiplier, is_main_filter, my_id): """Constructor Arguments: num_ownship_states {int} -- Number of ownship states for each asset x0 {np.ndarray} -- initial states P0 {np.ndarray} -- initial uncertainty buffer_capacity {int} -- capacity of measurement buffer meas_space_table {dict} -- Hash that stores how much buffer space a measurement takes up. Str (meas type) -> int (buffer space) Must have key entries "bookend", "bookstart" to indicate space needed for measurement implicitness filling in missed_meas_tolerance_table {dict} -- Hash that determines how many measurements of each type do we need to miss before indicating a bookend delta_codebook_table {dict} -- Hash thatp stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger) delta_multiplier {float} -- Delta trigger constant multiplier for this filter is_main_filter {bool} -- Is this filter a common or main filter (if main the meas buffer does not matter) my_id {int} -- ID# of the current asset (typically 0) """ if delta_multiplier <= 0: raise ValueError("Delta Multiplier must be greater than 0") self.original_estimate = [deepcopy(x0), deepcopy(P0)] self.delta_codebook_table = delta_codebook_table self.delta_multiplier = delta_multiplier self.buffer = MeasurementBuffer(meas_space_table, buffer_capacity) self.missed_meas_tolerance_table = missed_meas_tolerance_table self.is_main_filter = is_main_filter self.filter = ETFilter(my_id, num_ownship_states, 3, x0, P0, True) self.my_id = my_id # Initialize Ledgers self.ledger_meas = [] # In internal measurement form self.ledger_control = [] ## elements with [u, Q, time_delta, use_control_input] self.ledger_ci = [] ## Covariance Intersection ledger, each element is of form [x, P] self.ledger_update_times = [] ## Update times of when correction step executed self.expected_measurements = {} # When we don't receive an expected measurement we need to insert a "bookend" into the measurement buffer # Initialize first element of ledgers self.ledger_meas.append([]) self.ledger_control.append([]) self.ledger_ci.append([]) def add_meas(self, ros_meas, src_id, measured_id, delta_multiplier=THIS_FILTERS_DELTA, force_fuse=True): """Adds and records a measurement to the filter Measurements after last correction step time will be fused at next correction step measurements before will be recorded and fused in catch_up() Arguments: ros_meas {etddf.Measurement.msg} -- The measurement in ROS form src_id {int} -- asset ID that took the measurement measured_id {int} -- asset ID that was measured (can be any value for ownship measurement) Keyword Arguments: delta_multiplier {float} -- Delta multiplier to use for this measurement (default: {THIS_FILTERS_DELTA}) force_fuse {bool} -- If measurement is in the past, fuse it on the next update step anyway (default: {True}) Note: the ledger will still reflect the correct measurement time """ # Get the delta trigger for this measurement et_delta = self._get_meas_et_delta(ros_meas) # Check if we're not using a standard delta_multiplier if delta_multiplier != THIS_FILTERS_DELTA: et_delta = (et_delta / self.delta_multiplier) * delta_multiplier # Undo delta multiplication and scale et_delta by new multiplier # Get the update time index of the measurement time_index = self._get_time_index(ros_meas.stamp) # Convert ros_meas to an implicit or explicit internal measurement meas = self._get_internal_meas_from_ros_meas(ros_meas, src_id, measured_id, et_delta) orig_meas = meas # Common filter with delta tiering if (not self.is_main_filter and time_index==FUSE_MEAS_NEXT_UPDATE) and src_id == self.my_id: # Check if this measurement is allowed to be sent implicitly l = [x for x in MEASUREMENT_TYPES_NOT_SHARED if x in ros_meas.meas_type] if not l: # Check for Implicit Update if self.filter.check_implicit(meas): # Check if this is the first of the measurement stream, if so, insert a bookstart bookstart = meas.__class__.__name__ not in self.expected_measurements.keys() if bookstart: self.buffer.insert_marker(ros_meas, ros_meas.stamp, bookstart=True) meas = Asset.get_implicit_msg_equivalent(meas) # Fuse explicitly else: # TODO Check for overflow self.buffer.add_meas(deepcopy(ros_meas)) # Indicate we receieved our expected measurement missed_tolerance = deepcopy(self.missed_meas_tolerance_table[ros_meas.meas_type]) self.expected_measurements[orig_meas.__class__.__name__] = [missed_tolerance, ros_meas] # Append to the ledger self.ledger_meas[time_index].append(meas) # Fuse on next timestamp if time_index == FUSE_MEAS_NEXT_UPDATE or force_fuse: self.filter.add_meas(meas) else: pass # Measurement will be fused on delta_tier's catch_up() def predict(self, u, Q, time_delta=1.0, use_control_input=False): """Executes filter's prediction step Arguments: u {np.ndarray} -- control input (num_ownship_states / 2, 1) Q {np.ndarray} -- motion/process noise (nstates, nstates) Keyword Arguments: time_delta {float} -- Amount of time to predict in future (default: {1.0}) use_control_input {bool} -- Whether to use control input or assume constant velocity (default: {False}) """ self.filter.predict(u, Q, time_delta, use_control_input) self.ledger_control[-1] = [u, Q, time_delta, use_control_input] def correct(self, update_time): """Execute Correction Step in filter Arguments: update_time {time} -- Update time to record on the ledger update times """ # Check if we received all of the measurements we were expecting for emeas in self.expected_measurements.keys(): [rx, ros_meas] = self.expected_measurements[emeas] # We have reached our tolerance on the number of updates without receiving this measurement if rx < 1: self.buffer.insert_marker(ros_meas, update_time, bookstart=False) del self.expected_measurements[emeas] else: self.expected_measurements[emeas] = [rx - 1, ros_meas] # Run correction step on filter self.filter.correct() self.ledger_update_times.append(update_time) # Initialize next element of ledgers self.ledger_meas.append([]) self.ledger_control.append([]) self.ledger_ci.append([]) def convert(self, delta_multiplier): """Converts the filter to have a new delta multiplier Arguments: delta_multiplier {float} -- the delta multiplier of the new filter """ self.delta_multiplier = delta_multiplier def check_overflown(self): """Checks whether the filter's buffer has overflown Returns: bool -- True if buffer has overflown """ return self.buffer.check_overflown() def peek(self): """ Allows peeking of the buffer Returns: list -- the current state of the buffer """ return self.buffer.peek() def flush_buffer(self, final_time): """Returns the event triggered buffer Arguments: final_time {time} -- the last time measurements were considered to be added to the buffer Returns: list -- the flushed buffer of measurements """ self.expected_measurements = {} return self.buffer.flush(final_time) def reset(self, buffer, ledger_update_times, ledger_meas, ledger_control=None, ledger_ci=None): """Resets a ledger filter with the inputted ledgers Arguments: buffer {MeasurementBuffer} -- Measurement buffer to be preserved ledger_update_times {list} -- Update times ledger_meas {list} -- List of measurements at each update time Keyword Arguments: ledger_control {list} -- List of control inputs (default: {None}) ledger_ci {list} -- List of covariance intersections (default: {None}) Raises: ValueError: lengths of ledgers do not match """ self.buffer = deepcopy(buffer) self.ledger_update_times = deepcopy(ledger_update_times) # Measurement Ledger self.ledger_meas = deepcopy(ledger_meas) if len(self.ledger_meas)-1 != len(self.ledger_update_times): raise ValueError("Meas Ledger does not match length of update times!") # Control Input Ledger if ledger_control is not None: self.ledger_control = ledger_control if len(self.ledger_control)-1 != len(self.ledger_update_times): raise ValueError("Control Ledger does not match length of update times!") else: # Initialize with empty lists self.ledger_control = [[] for _ in range(len(self.ledger_update_times))] if not self.ledger_control: self.ledger_control = [[]] # Covariance intersection ledger if ledger_ci is not None: self.ledger_ci = ledger_ci if len(self.ledger_ci)-1 != len(self.ledger_update_times): raise ValueError("CI Ledger does not match length of update times!") else: # Initialize with empty lists self.ledger_ci = [[] for _ in range(len(self.ledger_update_times))] def _get_meas_et_delta(self, ros_meas): """Gets the delta trigger for the measurement Arguments: ros_meas {etddf.Measurement.msg} -- The measurement in ROS form Raises: KeyError: ros_meas.meas_type not found in the delta_codebook_table Returns: float -- the delta trigger scaled by the filter's delta multiplier """ # Match root measurement type e.g. "modem_range" with "modem_range_implicit" for meas_type in self.delta_codebook_table.keys(): if meas_type in ros_meas.meas_type: return self.delta_codebook_table[meas_type] * self.delta_multiplier raise KeyError("Measurement Type " + ros_meas.meas_type + " not found in self.delta_codebook_table") def _get_internal_meas_from_ros_meas(self, ros_meas, src_id, measured_id, et_delta): """Converts etddf/Measurement.msg (implicit or explicit) to a class in etddf/measurements.py Arguments: ros_meas {etddf.Measurement.msg} -- The measurement in ROS form src_id {int} -- asset ID that took the measurement measured_id {int} -- asset ID that was measured (can be any value for ownship measurement) et_delta {float} -- Delta trigger for this measurement Raises: NotImplementedError: Conversion between measurements forms has not been specified Returns: etddf.measurements.Explicit -- measurement in filter's internal form """ if "implicit" not in ros_meas.meas_type: if ros_meas.meas_type == "depth": return GPSz_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "modem_range" and not ros_meas.global_pose: # check global_pose list empty return Range_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "modem_range": return RangeFromGlobal_Explicit(measured_id, \ np.array(ros_meas.global_pose).reshape(-1,1),\ ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "modem_azimuth" and not ros_meas.global_pose: # check global_pose list empty return Azimuth_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "modem_azimuth": return AzimuthFromGlobal_Explicit(measured_id, \ np.array(ros_meas.global_pose).reshape(-1,1),\ ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "dvl_x": return Velocityx_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "dvl_y": return Velocityy_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta) # Sonar asset elif ros_meas.meas_type == "sonar_x" and not ros_meas.global_pose: return LinRelx_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "sonar_y" and not ros_meas.global_pose: return LinRely_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "sonar_z": return LinRelz_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta) # Sonar Landmark elif ros_meas.meas_type == "sonar_x" and ros_meas.global_pose: return GPSx_Explicit(src_id, ros_meas.global_pose[0] - ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "sonar_y" and ros_meas.global_pose: return GPSy_Explicit(src_id, ros_meas.global_pose[1] - ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "gps_x": return GPSx_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta) elif ros_meas.meas_type == "gps_y": return GPSy_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta) else: raise NotImplementedError(str(ros_meas)) # Implicit Measurement else: if ros_meas.meas_type == "depth_implicit": return GPSz_Implicit(src_id, ros_meas.variance, et_delta) elif ros_meas.meas_type == "dvl_x_implicit": return Velocityx_Implicit(src_id, ros_meas.variance, et_delta) elif ros_meas.meas_type == "dvl_y_implicit": return Velocityy_Implicit(src_id, ros_meas.variance, et_delta) elif ros_meas.meas_type == "sonar_x_implicit": return LinRelx_Implicit(src_id, measured_id, ros_meas.variance, et_delta) elif ros_meas.meas_type == "sonar_y_implicit": return LinRely_Implicit(src_id, measured_id, ros_meas.variance, et_delta) elif ros_meas.meas_type == "sonar_z_implicit": return LinRelz_Implicit(src_id, measured_id, ros_meas.variance, et_delta) else: raise NotImplementedError(str(ros_meas)) def _get_time_index(self, time_): """Converts a time to an update time index Uses the ledger of correction step times Arguments: time_ {time} -- Time to convert Returns: int -- corresponding index in the measurement,ci and control ledger if time_ > last update time --> returns FUSE_MEAS_NEXT_UPDATE """ # Check if we're fusing at next measurement time if len(self.ledger_update_times) == 0 or time_ > self.ledger_update_times[-1]: return FUSE_MEAS_NEXT_UPDATE # Lookup on what index this corresponds to in the ledger_update_times # Note: len(ledger_meas/control/ci) is always 1 greater than len(ledger_update_times) # Therefore, the first if statement in this fxn is for filling that last/newest slot # This for loop then has a 1 to 1 correspondence: ledger_update_times[i] corresponds to ledger_meas/control/ci[i] # The subtraction and addition below of indices is for zero order holding all measurements between times # t1 and t2 to be associated with time t2 for ind in reversed(range(len(self.ledger_update_times) - 1)): if time_ > self.ledger_update_times[ind]: return ind + 1 return 0
def catch_up(self, delta_multiplier, shared_buffer): """Updates main estimate and common estimate using the shared buffer Arguments: delta_multiplier {float} -- multiplier to scale et_delta's with shared_buffer {list} -- buffer shared from another asset Returns: int -- implicit measurement count in shared_buffer int -- explicit measurement count in this shared_buffer """ # Fill in implicit measurements in the buffer and align the meas timestamps with our own new_buffer, next_ledger_time_index = self._fillin_buffer(shared_buffer) implicit_meas_cnt = 0 explicit_meas_cnt = 0 # Add all measurements in buffer to ledgers of all ledger_filters for meas in new_buffer: self.add_meas(meas, delta_multiplier, force_fuse=False) if "implicit" in meas.meas_type: implicit_meas_cnt += 1 else: explicit_meas_cnt += 1 common_filters = {} for mult in self.delta_tiers.keys(): my_id = self.delta_tiers[mult].filter.my_id [x0, P0] = self.delta_tiers[mult].original_estimate common_filters[mult] = ETFilter(my_id, self.num_ownship_states, 3, x0, P0, True) # Initialize asset's main filter # Pair the main filter with the etfilter the other asset chose and use to update the main filter my_id = self.main_filter.filter.my_id [x0, P0] = self.main_filter.original_estimate other_assets_common = {my_id: common_filters[delta_multiplier]} main_filter = ETFilter_Main(my_id, self.num_ownship_states, 3, x0, P0, True, other_assets_common) # Extract full ledgers common_meas_ledger = {} for mult in self.delta_tiers.keys(): common_meas_ledger[mult] = self.delta_tiers[mult].ledger_meas main_control_ledger = self.main_filter.ledger_control main_ledger_meas = self.main_filter.ledger_meas # TODO add covariance intersection support (happens before correction) main_ci_ledger = self.main_filter.ledger_meas # Grab lock, no updates for right now # Initialize a new main and common filters (all are etfilters) using original estimate for i_ledge in range(len(self.main_filter.ledger_update_times)): [u, Q, delta_time, _] = main_control_ledger[i_ledge] for mult in common_filters.keys(): common_filters[mult].predict(u, Q, delta_time, use_control_input=False) ledger_meas = common_meas_ledger[mult][i_ledge] for meas in ledger_meas: common_filters[mult].add_meas(meas) common_filters[mult].correct() main_filter.predict(u, Q, delta_time, use_control_input=True) for meas in main_ledger_meas[i_ledge]: main_filter.add_meas(meas) main_filter.correct() # Trim ledgers if next_ledger_time_index != len(self.main_filter.ledger_update_times): ledger_update_times = self.main_filter.ledger_update_times[ next_ledger_time_index:] for mult in common_meas_ledger.keys(): common_meas_ledger[mult] = common_meas_ledger[mult][ next_ledger_time_index:] main_ledger_meas = main_ledger_meas[next_ledger_time_index:] main_control_ledger = main_control_ledger[next_ledger_time_index:] else: ledger_update_times = [] for mult in common_meas_ledger.keys(): common_meas_ledger[mult] = [[]] main_ledger_meas = [[]] main_control_ledger = [[]] ### Reset the ledger filters ### # Reset the delta tier filters for multiplier in self.delta_tiers.keys(): # Caught up estimate becomes new initial estimate x0 = common_filters[multiplier].x_hat P0 = common_filters[multiplier].P buf = deepcopy(self.delta_tiers[multiplier].buffer) # Instantiate new delta tier self.delta_tiers[multiplier] = LedgerFilter( self.num_ownship_states, x0, P0, \ self.buffer_capacity, self.meas_space_table, \ self.missed_meas_tolerance_table, \ self.delta_codebook_table, multiplier, \ False, self.asset2id[self.my_name] ) self.delta_tiers[multiplier].reset(buf, ledger_update_times, common_meas_ledger[multiplier]) ### Reset the main filter ### # Caught up estimate becomes new initial estimate x0 = main_filter.x_hat P0 = main_filter.P mainbuf = deepcopy(self.main_filter.buffer) # Instantiate new Main Filter self.main_filter = LedgerFilter( self.num_ownship_states, x0, P0, \ self.buffer_capacity, self.meas_space_table, \ self.missed_meas_tolerance_table, \ self.delta_codebook_table, 1.0, \ True, self.asset2id[self.my_name] ) self.main_filter.reset(mainbuf, ledger_update_times, main_ledger_meas, main_control_ledger) return implicit_meas_cnt, explicit_meas_cnt
class MostRecent: """Windowed Communication Event Triggered Communication Provides a buffer that can be pulled and received from another. Just shares the N most recent measurements of another agent """ def __init__(self, num_ownship_states, x0, P0, buffer_capacity, meas_space_table, delta_codebook_table, delta_multipliers, asset2id, my_name, default_meas_variance): """Constructor Arguments: num_ownship_states {int} -- Number of ownship states for each asset x0 {np.ndarray} -- initial states P0 {np.ndarray} -- initial uncertainty buffer_capacity {int} -- capacity of measurement buffer meas_space_table {dict} -- Hash that stores how much buffer space a measurement takes up. Str (meas type) -> int (buffer space) delta_codebook_table {dict} -- Hash that stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger) delta_multipliers {list} -- List of delta trigger multipliers asset2id {dict} -- Hash to get the id number of an asset from the string name my_name {str} -- Name to loopkup in asset2id the current asset's ID# default_meas_variance {dict} -- Hash to get measurement variance """ self.meas_ledger = [] self.asset2id = asset2id self.my_name = my_name self.default_meas_variance = default_meas_variance self.filter = ETFilter(asset2id[my_name], num_ownship_states, 3, x0, P0, True) # Remember for instantiating new LedgerFilters self.num_ownship_states = num_ownship_states self.buffer_capacity = buffer_capacity self.meas_space_table = meas_space_table self.last_update_time = None def add_meas(self, ros_meas, common=False): """Adds a measurement to filter Arguments: ros_meas {etddf.Measurement.msg} -- Measurement taken Keyword Arguments: delta_multiplier {int} -- not used (left to keep consistent interface) force_fuse {bool} -- not used """ src_id = self.asset2id[ros_meas.src_asset] if ros_meas.measured_asset in self.asset2id.keys(): measured_id = self.asset2id[ros_meas.measured_asset] elif ros_meas.measured_asset == "": measured_id = -1 #self.asset2id["surface"] else: rospy.logerr("ETDDF doesn't recognize: " + ros_meas.measured_asset + " ... ignoring") return meas = get_internal_meas_from_ros_meas(ros_meas, src_id, measured_id) self.filter.add_meas(meas) self.meas_ledger.append(ros_meas) @staticmethod def run_covariance_intersection(xa, Pa, xb, Pb): """Runs covariance intersection on the two estimates A and B Arguments: xa {np.ndarray} -- mean of A Pa {np.ndarray} -- covariance of A xb {np.ndarray} -- mean of B Pb {np.ndarray} -- covariance of B Returns: c_bar {np.ndarray} -- intersected estimate Pcc {np.ndarray} -- intersected covariance """ Pa_inv = np.linalg.inv(Pa) Pb_inv = np.linalg.inv(Pb) fxn = lambda omega: np.trace(np.linalg.inv(omega*Pa_inv + (1-omega)*Pb_inv)) omega_optimal = scipy.optimize.minimize_scalar(fxn, bounds=(0,1), method="bounded").x # print("Omega: {}".format(omega_optimal)) # We'd expect a value of 1 Pcc = np.linalg.inv(omega_optimal*Pa_inv + (1-omega_optimal)*Pb_inv) c_bar = Pcc.dot( omega_optimal*Pa_inv.dot(xa) + (1-omega_optimal)*Pb_inv.dot(xb)) jump = max( [np.linalg.norm(c_bar - xa), np.linalg.norm(c_bar - xb)] ) if jump > 10: # Think this is due to a floating point error in the inversion print("!!!!!!!!!!! BIG JUMP!!!!!!!") print(xa) print(xb) print(c_bar) print(omega_optimal) print(Pa) print(Pb) print(Pcc) return c_bar.reshape(-1,1), Pcc def psci(self, x_prior, P_prior, c_bar, Pcc): """ Partial State Update all other states of the filter using the result of CI Arguments: x_prior {np.ndarray} -- This filter's prior estimate (over common states) P_prior {np.ndarray} -- This filter's prior covariance c_bar {np.ndarray} -- intersected estimate Pcc {np.ndarray} -- intersected covariance Returns: None Updates self.main_filter.filter.x_hat and P, the delta tier's primary estimate """ # Full state estimates x = self.filter.x_hat P = self.filter.P D_inv = np.linalg.inv(Pcc) - np.linalg.inv(P_prior) D_inv_d = np.dot( np.linalg.inv(Pcc), c_bar) - np.dot( np.linalg.inv(P_prior), x_prior) my_id = self.asset2id[self.my_name] begin_ind = my_id*self.num_ownship_states end_ind = (my_id+1)*self.num_ownship_states info_vector = np.zeros( x.shape ) info_vector[begin_ind:end_ind] = D_inv_d info_matrix = np.zeros( P.shape ) info_matrix[begin_ind:end_ind, begin_ind:end_ind] = D_inv posterior_cov = np.linalg.inv( np.linalg.inv( P ) + info_matrix ) tmp = np.dot(np.linalg.inv( P ), x) + info_vector posterior_state = np.dot( posterior_cov, tmp ) self.filter.x_hat = posterior_state self.filter.P = posterior_cov def intersect(self, x, P): """Runs covariance intersection with main filter's estimate Arguments: x {np.ndarray} -- other filter's mean P {np.ndarray} -- other filter's covariance Returns: c_bar {np.ndarray} -- intersected estimate Pcc {np.ndarray} -- intersected covariance """ my_id = self.asset2id[self.my_name] # Slice out overlapping states in main filter begin_ind = my_id*self.num_ownship_states end_ind = (my_id+1)*self.num_ownship_states x_prior = self.filter.x_hat[begin_ind:end_ind].reshape(-1,1) P_prior = self.filter.P[begin_ind:end_ind,begin_ind:end_ind] P_prior = P_prior.reshape(self.num_ownship_states, self.num_ownship_states) c_bar, Pcc = MostRecent.run_covariance_intersection(x, P, x_prior, P_prior) # Update main filter states if Pcc.shape != self.filter.P.shape: self.psci(x_prior, P_prior, c_bar, Pcc) # self.filter.x_hat[begin_ind:end_ind] = c_bar # self.filter.P[begin_ind:end_ind,begin_ind:end_ind] = Pcc else: self.filter.x_hat = c_bar self.filter.P = Pcc return c_bar, Pcc def _add_variances(self, buffer): for msg in buffer: if "_burst" in msg.meas_type: meas_type = msg.meas_type.split("_burst")[0] else: meas_type = msg.meas_type msg.variance = self.default_meas_variance[meas_type] * 2.0 return buffer def catch_up(self, index): pass def receive_buffer(self, buffer, mult, src_asset): """Updates estimate based on buffer Arguments: delta_multiplier {float} -- multiplier to scale et_delta's with shared_buffer {list} -- buffer shared from another asset Returns: int -- implicit measurement count in shared_buffer int -- explicit measurement count in this shared_buffer """ buffer = self._add_variances(buffer) # buffer = self._add_etdeltas(buffer, delta_multiplier) for meas in buffer: # Fuse all of the measurements now self.add_meas(meas) return 0, len(buffer) def pull_buffer(self): """Pulls all measurements that'll fit Returns: multiplier {float} -- the delta multiplier that was chosen buffer {list} -- the buffer of ros measurements """ buffer = [] cost = 0 ind = -1 while abs(ind) <= len(self.meas_ledger): new_meas = self.meas_ledger[ind] space = self.meas_space_table[new_meas.meas_type] if cost + space <= self.buffer_capacity: if "sonar_z" not in new_meas.meas_type and "modem" not in new_meas.meas_type and "gps" not in new_meas.meas_type: buffer.append(new_meas) cost += space else: break ind -= 1 self.meas_ledger = [] return 1, buffer def update(self, update_time, u, Q, nav_mean, nav_cov): """Execute Prediction & Correction Step in filter Arguments: update_time {time} -- Update time to record on the ledger update times u {np.ndarray} -- control input (num_ownship_states / 2, 1) Q {np.ndarray} -- motion/process noise (nstates, nstates) nav filter mean nav filter covariance """ if self.last_update_time is not None: time_delta = (update_time - self.last_update_time).to_sec() self.filter.predict(u, Q, time_delta, use_control_input=False) # Run correction step on filter self.filter.correct() # Intersect c_bar, Pcc = None, None if nav_mean is not None and nav_cov is not None: # print("***************************8 Intersecting **********************************") c_bar, Pcc = self.intersect(nav_mean, nav_cov) self.last_update_time = update_time return c_bar, Pcc def get_asset_estimate(self, asset_name): """Gets main filter's estimate of an asset Arguments: asset_name {str} -- Name of asset Returns np.ndarray -- Mean estimate of asset (num_ownship_states, 1) np.ndarray -- Covariance of estimate of asset (num_ownship_states, num_ownship_states) """ asset_id = self.asset2id[asset_name] begin_ind = asset_id*self.num_ownship_states end_ind = (asset_id+1)*self.num_ownship_states asset_mean = self.filter.x_hat[begin_ind:end_ind,0] asset_unc = self.filter.P[begin_ind:end_ind,begin_ind:end_ind] return deepcopy(asset_mean), deepcopy(asset_unc) def debug_print_buffers(self): return self.meas_ledger