예제 #1
0
    def __init__(self, num_ownship_states, x0, P0, buffer_capacity, meas_space_table, delta_codebook_table, delta_multipliers, asset2id, my_name, default_meas_variance):
        """Constructor

        Arguments:
            num_ownship_states {int} -- Number of ownship states for each asset
            x0 {np.ndarray} -- initial states
            P0 {np.ndarray} -- initial uncertainty
            buffer_capacity {int} -- capacity of measurement buffer
            meas_space_table {dict} -- Hash that stores how much buffer space a measurement takes up. Str (meas type) -> int (buffer space)
            delta_codebook_table {dict} -- Hash that stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger)
            delta_multipliers {list} -- List of delta trigger multipliers
            asset2id {dict} -- Hash to get the id number of an asset from the string name
            my_name {str} -- Name to loopkup in asset2id the current asset's ID#
            default_meas_variance {dict} -- Hash to get measurement variance
        """
        self.meas_ledger = []
        self.asset2id = asset2id
        self.my_name = my_name
        self.default_meas_variance = default_meas_variance

        self.filter = ETFilter(asset2id[my_name], num_ownship_states, 3, x0, P0, True)

        # Remember for instantiating new LedgerFilters
        self.num_ownship_states = num_ownship_states
        self.buffer_capacity = buffer_capacity
        self.meas_space_table = meas_space_table
        self.last_update_time = None
예제 #2
0
    def __init__(self,
                 num_ownship_states,
                 x0,
                 P0,
                 delta_codebook_table,
                 delta_multiplier,
                 is_main_filter,
                 asset2id,
                 my_name,
                 default_meas_variance,
                 common_filter=None):
        """Constructor

        Arguments:
            num_ownship_states {int} -- Number of ownship states for each asset
            x0 {np.ndarray} -- initial states
            P0 {np.ndarray} -- initial uncertainty
            delta_codebook_table {dict} -- Hash thatp stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger)
            delta_multiplier {float} -- Delta trigger constant multiplier for this filter
            is_main_filter {bool} -- Is this filter a common or main filter (if main the meas buffer does not matter)
            asset2id {dict} -- Hash to get the id number of an asset from the string name
            my_name {str} -- Name to loopkup in asset2id the current asset's ID#
            default_meas_variance {dict} -- Hash to get measurement variance
            common_filter {dict} -- asset to common ETFilter
        """
        if delta_multiplier <= 0:
            raise ValueError("Delta Multiplier must be greater than 0")

        self.num_ownship_states = num_ownship_states
        self.delta_codebook_table = delta_codebook_table
        self.delta_multiplier = delta_multiplier
        self.is_main_filter = is_main_filter
        if self.is_main_filter:
            assert common_filter is not None
            self.filter = ETFilter_Main(asset2id[my_name], num_ownship_states,
                                        3, x0, P0, True, {"": common_filter})
        else:
            self.filter = ETFilter(asset2id[my_name], num_ownship_states, 3,
                                   x0, P0, True)
        self.original_filter = deepcopy(self.filter)
        self.asset2id = asset2id
        self.my_name = my_name
        self.default_meas_variance = default_meas_variance

        # Initialize ledger with first update
        self.ledger = {}
        self._add_block()

        self.explicit_count = 0
        self.meas_types_received = []
예제 #3
0
    def __init__(self, num_ownship_states, x0, P0, buffer_capacity,
                 meas_space_table, missed_meas_tolerance_table,
                 delta_codebook_table, delta_multiplier, is_main_filter,
                 my_id):
        """Constructor

        Arguments:
            num_ownship_states {int} -- Number of ownship states for each asset
            x0 {np.ndarray} -- initial states
            P0 {np.ndarray} -- initial uncertainty
            buffer_capacity {int} -- capacity of measurement buffer
            meas_space_table {dict} -- Hash that stores how much buffer space a measurement takes up. Str (meas type) -> int (buffer space)
                Must have key entries "bookend", "bookstart" to indicate space needed for measurement implicitness filling in
            missed_meas_tolerance_table {dict} -- Hash that determines how many measurements of each type do we need to miss before indicating a bookend
            delta_codebook_table {dict} -- Hash thatp stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger)
            delta_multiplier {float} -- Delta trigger constant multiplier for this filter
            is_main_filter {bool} -- Is this filter a common or main filter (if main the meas buffer does not matter)
            my_id {int} -- ID# of the current asset (typically 0)
        """
        if delta_multiplier <= 0:
            raise ValueError("Delta Multiplier must be greater than 0")

        self.original_estimate = [deepcopy(x0), deepcopy(P0)]
        self.delta_codebook_table = delta_codebook_table
        self.delta_multiplier = delta_multiplier
        self.buffer = MeasurementBuffer(meas_space_table, buffer_capacity)
        self.missed_meas_tolerance_table = missed_meas_tolerance_table
        self.is_main_filter = is_main_filter
        self.filter = ETFilter(my_id, num_ownship_states, 3, x0, P0, True)

        # Initialize Ledgers
        self.ledger_meas = []  # In internal measurement form
        self.ledger_control = [
        ]  ## elements with [u, Q, time_delta, use_control_input]
        self.ledger_ci = [
        ]  ## Covariance Intersection ledger, each element is of form [x, P]
        self.ledger_update_times = [
        ]  ## Update times of when correction step executed
        self.expected_measurements = {
        }  # When we don't receive an expected measurement we need to insert a "bookend" into the measurement buffer

        # Initialize first element of ledgers
        self.ledger_meas.append([])
        self.ledger_control.append([])
        self.ledger_ci.append([])
예제 #4
0
class LedgerFilter:
    """Records filter inputs and makes available an event triggered buffer. """
    def __init__(self,
                 num_ownship_states,
                 x0,
                 P0,
                 delta_codebook_table,
                 delta_multiplier,
                 is_main_filter,
                 asset2id,
                 my_name,
                 default_meas_variance,
                 common_filter=None):
        """Constructor

        Arguments:
            num_ownship_states {int} -- Number of ownship states for each asset
            x0 {np.ndarray} -- initial states
            P0 {np.ndarray} -- initial uncertainty
            delta_codebook_table {dict} -- Hash thatp stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger)
            delta_multiplier {float} -- Delta trigger constant multiplier for this filter
            is_main_filter {bool} -- Is this filter a common or main filter (if main the meas buffer does not matter)
            asset2id {dict} -- Hash to get the id number of an asset from the string name
            my_name {str} -- Name to loopkup in asset2id the current asset's ID#
            default_meas_variance {dict} -- Hash to get measurement variance
            common_filter {dict} -- asset to common ETFilter
        """
        if delta_multiplier <= 0:
            raise ValueError("Delta Multiplier must be greater than 0")

        self.num_ownship_states = num_ownship_states
        self.delta_codebook_table = delta_codebook_table
        self.delta_multiplier = delta_multiplier
        self.is_main_filter = is_main_filter
        if self.is_main_filter:
            assert common_filter is not None
            self.filter = ETFilter_Main(asset2id[my_name], num_ownship_states,
                                        3, x0, P0, True, {"": common_filter})
        else:
            self.filter = ETFilter(asset2id[my_name], num_ownship_states, 3,
                                   x0, P0, True)
        self.original_filter = deepcopy(self.filter)
        self.asset2id = asset2id
        self.my_name = my_name
        self.default_meas_variance = default_meas_variance

        # Initialize ledger with first update
        self.ledger = {}
        self._add_block()

        self.explicit_count = 0
        self.meas_types_received = []

    def change_common_filter(self, common_filter):
        self.filter.common_filters = {"": common_filter}

    def _add_block(self):
        next_step = len(self.ledger) + 1
        self.ledger[next_step] = {
            "meas": [],
            "time": None,
            "u": None,
            "Q": None,
            "nav_mean": None,
            "nav_cov": None,
            "x_hat_prior": deepcopy(self.filter.x_hat),
            "P_prior": deepcopy(self.filter.P)
        }

    def _get_meas_ledger_index(self, meas_time):
        for i in range(1, len(self.ledger) + 1):
            ledger_time = self.ledger[i]["time"]
            if ledger_time is None:
                return i
            elif meas_time < ledger_time:
                return i

    def _is_shareable(self, src_asset, meas_type):
        if not self.is_main_filter and src_asset == self.my_name:
            for m in MEASUREMENT_TYPES_SHARED:
                if m in meas_type:
                    return True
        return False

    def add_meas(self, ros_meas, output=False):
        """Adds and records a measurement to the filter

        Arguments:
            ros_meas {etddf.Measurement.msg} -- The measurement in ROS form
        """
        msg_id = self._get_meas_identifier(ros_meas)
        # Main filter fuses all measurements
        if self.is_main_filter:
            pass
        elif ros_meas.src_asset != self.my_name:
            pass
        elif self._is_shareable(ros_meas.src_asset, ros_meas.meas_type):
            pass
        elif msg_id in self.meas_types_received:
            return
        else:  # Don't fuse (e.g. depth, sonar_z)
            return -1
        self.meas_types_received.append(msg_id)

        ledger_ind = self._get_meas_ledger_index(ros_meas.stamp)

        # Check for Event-Triggering
        if self._is_shareable(ros_meas.src_asset, ros_meas.meas_type):
            if "implicit" not in ros_meas.meas_type:
                src_id = self.asset2id[ros_meas.src_asset]
                measured_id = self.asset2id[ros_meas.measured_asset]
                ros_meas.et_delta = self._get_meas_et_delta(ros_meas.meas_type)
                meas = get_internal_meas_from_ros_meas(ros_meas, src_id,
                                                       measured_id)

                implicit, innovation = self.filter.check_implicit(meas)
                if implicit:

                    ros_meas.meas_type += "_implicit"

                    # print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ IMPLICIT @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@")
                    # print(ros_meas)
                    # print(vars(meas))
                    # print(self.filter.x_hat)
                else:
                    self.explicit_count += 1
                    if output:
                        expected = meas.data - innovation
                        meas_id = self._get_meas_identifier(ros_meas)
                        last_update_time = self.ledger[len(self.ledger) -
                                                       1]["time"]
                        # print("Explicit {} {} : expected: {}, got: {}".format(last_update_time.to_sec(), meas_id, expected, meas.data))
                        # print(self.meas_types_received)
                        # print(self.filter.x_hat.T)
                    # print("Explicit #{} {} : {}".format(self.explicit_count, self.delta_multiplier, ros_meas.meas_type))
                #     print(ros_meas)
                #     print(vars(meas))
                #     print(self.filter.x_hat)

        # Append to the ledger
        self.ledger[ledger_ind]["meas"].append(ros_meas)
        return ledger_ind

    @staticmethod
    def run_covariance_intersection(xa, Pa, xb, Pb):
        """Runs covariance intersection on the two estimates A and B

        Arguments:
            xa {np.ndarray} -- mean of A
            Pa {np.ndarray} -- covariance of A
            xb {np.ndarray} -- mean of B
            Pb {np.ndarray} -- covariance of B
        
        Returns:
            c_bar {np.ndarray} -- intersected estimate
            Pcc {np.ndarray} -- intersected covariance
        """
        Pa_inv = np.linalg.inv(Pa)
        Pb_inv = np.linalg.inv(Pb)

        fxn = lambda omega: np.trace(
            np.linalg.inv(omega * Pa_inv + (1 - omega) * Pb_inv))
        omega_optimal = scipy.optimize.minimize_scalar(fxn,
                                                       bounds=(0, 1),
                                                       method="bounded").x

        # print("Omega: {}".format(omega_optimal)) # We'd expect a value of 1

        Pcc = np.linalg.inv(omega_optimal * Pa_inv +
                            (1 - omega_optimal) * Pb_inv)
        c_bar = Pcc.dot(omega_optimal * Pa_inv.dot(xa) +
                        (1 - omega_optimal) * Pb_inv.dot(xb))

        jump = max([np.linalg.norm(c_bar - xa), np.linalg.norm(c_bar - xb)])

        if jump > 10:  # Think this is due to a floating point error in the inversion
            print("!!!!!!!!!!! BIG JUMP!!!!!!!")
            print(xa)
            print(xb)
            print(c_bar)
            print(omega_optimal)
            print(Pa)
            print(Pb)
            print(Pcc)

        return c_bar.reshape(-1, 1), Pcc

    def psci(self, x_prior, P_prior, c_bar, Pcc):
        """ Partial State Update all other states of the filter using the result of CI

        Arguments:
            x_prior {np.ndarray} -- This filter's prior estimate (over common states)
            P_prior {np.ndarray} -- This filter's prior covariance 
            c_bar {np.ndarray} -- intersected estimate
            Pcc {np.ndarray} -- intersected covariance

        Returns:
            None
            Updates self.main_filter.filter.x_hat and P, the delta tier's primary estimate
        """
        # Full state estimates
        x = self.filter.x_hat
        P = self.filter.P

        D_inv = np.linalg.inv(Pcc) - np.linalg.inv(P_prior)
        D_inv_d = np.dot(np.linalg.inv(Pcc), c_bar) - np.dot(
            np.linalg.inv(P_prior), x_prior)

        my_id = self.asset2id[self.my_name]
        begin_ind = my_id * self.num_ownship_states
        end_ind = (my_id + 1) * self.num_ownship_states

        info_vector = np.zeros(x.shape)
        info_vector[begin_ind:end_ind] = D_inv_d

        info_matrix = np.zeros(P.shape)
        info_matrix[begin_ind:end_ind, begin_ind:end_ind] = D_inv

        posterior_cov = np.linalg.inv(np.linalg.inv(P) + info_matrix)
        tmp = np.dot(np.linalg.inv(P), x) + info_vector
        posterior_state = np.dot(posterior_cov, tmp)

        self.filter.x_hat = posterior_state
        self.filter.P = posterior_cov

    def intersect(self, x, P):
        """Runs covariance intersection with main filter's estimate

        Arguments:
            x {np.ndarray} -- other filter's mean
            P {np.ndarray} -- other filter's covariance

        Returns:
            c_bar {np.ndarray} -- intersected estimate
            Pcc {np.ndarray} -- intersected covariance
        """

        my_id = self.asset2id[self.my_name]

        # Slice out overlapping states in main filter
        begin_ind = my_id * self.num_ownship_states
        end_ind = (my_id + 1) * self.num_ownship_states
        x_prior = self.filter.x_hat[begin_ind:end_ind].reshape(-1, 1)
        P_prior = self.filter.P[begin_ind:end_ind, begin_ind:end_ind]
        P_prior = P_prior.reshape(self.num_ownship_states,
                                  self.num_ownship_states)

        c_bar, Pcc = LedgerFilter.run_covariance_intersection(
            x, P, x_prior, P_prior)

        # Update main filter states
        if Pcc.shape != self.filter.P.shape:
            self.psci(x_prior, P_prior, c_bar, Pcc)
            # self.filter.x_hat[begin_ind:end_ind] = c_bar
            # self.filter.P[begin_ind:end_ind,begin_ind:end_ind] = Pcc
        else:
            self.filter.x_hat = c_bar
            self.filter.P = Pcc

        return c_bar, Pcc

    def reset_estimate(self):
        self.filter.x_hat = self.ledger[len(self.ledger)]["x_hat_prior"]
        self.filter.P = self.ledger[len(self.ledger)]["P_prior"]

    def update(self, update_time, u, Q, nav_mean, nav_cov):
        """Execute Prediction & Correction Step in filter

        Arguments:
            update_time {time} -- Update time to record on the ledger update times
            u {np.ndarray} -- control input (num_ownship_states / 2, 1)
            Q {np.ndarray} -- motion/process noise (nstates, nstates)
            nav filter mean
            nav filter covariance
        """
        # self.ledger[len(self.ledger)]["x_hat_prior"] =
        # self.ledger[len(self.ledger)]["P_prior"] = deepcopy(self.filter.P)
        self.meas_types_received = []

        # Run prediction step
        if len(self.ledger) > 1:
            time_delta = (update_time -
                          self.ledger[len(self.ledger) - 1]["time"]).to_sec()
            self.filter.predict(u, Q, time_delta, use_control_input=False)

        # Add all measurements
        # if self.my_name != "surface":
        # print("### {} ###".format(self.my_name))
        for ros_meas in self.ledger[len(self.ledger)]["meas"]:

            src_id = self.asset2id[ros_meas.src_asset]
            measured_id = self.asset2id[ros_meas.measured_asset]
            meas = get_internal_meas_from_ros_meas(ros_meas, src_id,
                                                   measured_id)
            # if self.my_name != "surface":
            # print(self._get_meas_identifier(ros_meas))
            self.filter.add_meas(meas)

        # Run correction step on filter
        self.filter.correct()

        # Intersect
        c_bar, Pcc = None, None
        if self.is_main_filter and (nav_mean is not None
                                    and nav_cov is not None):
            # print("***************************8 Intersecting **********************************")
            c_bar, Pcc = self.intersect(nav_mean, nav_cov)

        # Save all variables of this update
        self.ledger[len(self.ledger)]["time"] = update_time
        self.ledger[len(self.ledger)]["u"] = u
        self.ledger[len(self.ledger)]["Q"] = Q
        self.ledger[len(self.ledger)]["nav_mean"] = nav_mean
        self.ledger[len(self.ledger)]["nav_cov"] = nav_cov
        self._add_block()

        return c_bar, Pcc

    def convert(self, delta_multiplier):
        """Converts the filter to have a new delta multiplier
            
        Arguments:
            delta_multiplier {float} -- the delta multiplier of the new filter
        """
        self.delta_multiplier = delta_multiplier

    def _get_meas_identifier(self, msg, undo=False):
        """ Returns a unique string for that msg

        sonar_x (implicit/explicit) me to agent0 --> sonar_x_me_agent0

        if undo, msg is a "msg_id"/previous call to this function
        """
        if not undo:
            meas_type = msg.meas_type
            if "implicit" in meas_type:
                meas_type = meas_type.split("_implicit")[0]
            elif "burst" in meas_type:
                meas_type = meas_type.split("_burst")[0]
            identifier = "{}-{}-{}".format(meas_type, msg.src_asset,
                                           msg.measured_asset)
            return identifier
        else:  # Go from msg (msg_id) ==> ros msg
            meas_type, src_asset, measured_asset = msg.split("-")
            m = Measurement()
            m.meas_type = meas_type
            m.src_asset = src_asset
            m.measured_asset = measured_asset
            return m

    def _get_shareable_meas_dict(self, last_shared_index):
        """
        Returns a measurement dict 
            msg_id ==> list of times the msg appears
                   ==> list of explicit measurements
        """
        meas_dict = {}
        explicit_count = 0
        for i in range(last_shared_index, len(self.ledger)):
            for meas in self.ledger[i]["meas"]:
                if self._is_shareable(meas.src_asset, meas.meas_type):
                    msg_id = self._get_meas_identifier(meas)
                    if msg_id not in meas_dict:
                        meas_dict[msg_id] = {"times": [], "explicit": []}
                    meas_dict[msg_id]["times"].append(meas.stamp)
                    if "implicit" not in meas.meas_type:
                        meas_dict[msg_id]["explicit"].append(meas)
                        explicit_count += 1
        # print("Delta: {} | Explicit Count creating meas dict: {}".format(self.delta_multiplier, explicit_count))
        return meas_dict

    def _get_meas_dict_from_buffer(self, buffer):
        """
        Returns a measurement dictionary to assist with recreating the measurement sequence
            msg_id ==> list of burst msgs
                   ==> list of epxlicit measurements
        """
        meas_dict = {}
        for meas in buffer:
            msg_id = self._get_meas_identifier(meas)
            if msg_id not in meas_dict:
                meas_dict[msg_id] = {"bursts": [], "explicit": []}
            if "burst" in meas.meas_type:
                meas_dict[msg_id]["bursts"].append(meas)
            else:
                meas_dict[msg_id]["explicit"].append(meas)
        return meas_dict

    def _get_bursts(self, times, threshold=3):
        last_time = None
        bursts = [[]]
        for t in times:
            if last_time is None or (t - last_time).to_sec() < threshold:
                bursts[-1].append(t)
            else:
                bursts.append([t])
            last_time = t
        return bursts

    def _make_burst_msg(self, msg_id, value, start_time, avg_latency_s):
        meas = self._get_meas_identifier(msg_id, undo=True)
        meas.meas_type += "_burst"
        assert avg_latency_s < 10  # Needed for way we are sending
        meas.data = value + (avg_latency_s / 10.0)
        meas.stamp = start_time
        return meas

    def _expand_burst_msg(self, burst_msg):
        """
        Turn a burst msg into many implicit measurements
        """
        assert "burst" in burst_msg.meas_type
        burst_list = []

        num_msgs = int(burst_msg.data)
        avg_latency = (burst_msg.data - int(burst_msg.data)) * 10
        # burst_msg.meas_type = burst_msg.meas_type.split("_burst")[0]
        msg_id = self._get_meas_identifier(burst_msg)
        # print("Reconstructed msg_id: {}".format(msg_id))
        # print("Avg latency: {}".format(avg_latency))
        # print("Num msgs: {}".format(num_msgs))
        for i in range(num_msgs):
            new_msg = self._get_meas_identifier(msg_id, undo=True)
            new_msg.stamp = burst_msg.stamp + rospy.Duration(i * avg_latency)
            new_msg.meas_type += "_implicit"
            new_msg.variance = burst_msg.variance
            new_msg.et_delta = burst_msg.et_delta
            burst_list.append(new_msg)
        return burst_list, avg_latency

    def _add_variances(self, buffer):
        for msg in buffer:
            if "_burst" in msg.meas_type:
                meas_type = msg.meas_type.split("_burst")[0]
            else:
                meas_type = msg.meas_type

            msg.variance = self.default_meas_variance[meas_type] * 2.0
        return buffer

    def _add_etdeltas(self, buffer, delta_multiplier):
        for msg in buffer:
            if "_burst" in msg.meas_type:
                meas_type = msg.meas_type.split("_burst")[0]
                msg.et_delta = self.delta_codebook_table[
                    meas_type] * delta_multiplier
            else:
                msg.et_delta = self.delta_codebook_table[
                    msg.meas_type] * delta_multiplier
        # print(buffer)
        return buffer

    def pull_buffer(self, last_shared_index):
        """Returns the event triggered buffer

        Returns:
            list -- the flushed buffer of measurements
        """
        buffer = []
        explicit_buffer = []

        # report_implicit_count = 0
        # report_last_shared_time = self.ledger[last_shared_index]["time"]
        # report_now_last_shared_time = rospy.get_rostime()
        # report_duration = report_now_last_shared_time - report_last_shared_time

        meas_dict = self._get_shareable_meas_dict(last_shared_index)
        print("PULLING BUFFER: current index {}".format(len(self.ledger)))
        for msg_id in meas_dict:
            times = meas_dict[msg_id]["times"]  # Should be sorted
            explicit = meas_dict[msg_id]["explicit"]
            bursts = self._get_bursts(times)
            # print("Delta: {} | Msg id: {} | Num Explicit: {}".format(self.delta_multiplier, msg_id, len(explicit)))
            # print("size(times): {}".format(len(times)))
            # print("size(explicit): {}".format(len(explicit)))
            # print("bursts: {}".format(bursts))

            if len(bursts) > 1:
                print("ERROR MULTIPLE BURSTS DETECTED")
                print(bursts)

            b = bursts[-1]  # Only use last burst
            b_numpy = np.array(b)
            start_time = b[0]
            # print("Constructing msg: {}".format(msg_id))
            if len(b) > 1:
                cumdiff = b_numpy[
                    1:] - b_numpy[:-1]  # Get the adjacent difference
                latencies = [lat.to_sec() for lat in cumdiff]
                mean_lat = np.mean(latencies)
                # print("Avg latency: {}".format(mean_lat))
            else:
                mean_lat = 0
            # print("Num msgs: {}".format(len(b)))
            burst_msg = self._make_burst_msg(msg_id, len(b), start_time,
                                             mean_lat)
            buffer.append(burst_msg)
            explicit_buffer.extend(explicit)
            # report_implicit_count += (len(b) - len(explicit))

        meas_sort = lambda x: x.stamp
        explicit_buffer.sort(key=meas_sort, reverse=True)
        buffer.extend(explicit_buffer)

        # REPORT
        # print("******* BUFFER SHARING REPORT FOR {} w/ Delta {}*******".format(self.my_name, self.delta_multiplier))
        # print("Last shared time: {}".format(report_last_shared_time.to_sec()))
        # print("Sharing duration: {}".format(report_duration.to_sec()))
        # print("Sharing time now: {}".format(report_now_last_shared_time.to_sec()))
        # print("Implicit cnt: {}".format(report_implicit_count))
        # print("Explicit cnt: {}".format(len(explicit_buffer)))

        return buffer  # Delta-Tiering
        # return explicit_buffer # N-most recent

    def fillin_buffer(self, buffer, delta_multiplier):
        # Add variances & et-deltas
        buffer = self._add_variances(buffer)
        buffer = self._add_etdeltas(buffer, delta_multiplier)

        # Delta-tiering
        new_buffer = []
        implicit_cnt, explicit_cnt = 0, 0

        # N-most recent
        # new_buffer = buffer
        # implicit_cnt, explicit_cnt = 0, len(buffer)

        meas_dict = self._get_meas_dict_from_buffer(buffer)
        for msg_id in meas_dict:
            bursts = meas_dict[msg_id]["bursts"]
            explicit = meas_dict[msg_id]["explicit"]
            meas_sort = lambda x: x.stamp
            explicit.sort(key=meas_sort)
            # print("Explicit meas:")
            # print(explicit)
            all_implicit = []
            for b in bursts:
                implicit_meas, avg_latency = self._expand_burst_msg(b)
                all_implicit.extend(implicit_meas)
            all_implicit.sort(key=meas_sort)
            # Match all of the explicit to their corresponding implicit placeholders:
            # This works by first aligning the explicit with the last measurements in the implicit array
            # Then move the first explicit forward in the implicit array to the best match
            # Then proceed with each explicit sequentially, moving it forward and matching to the remaining best fits
            # assert len(all_implicit) >= len(explicit) # Uneeded with following code
            left_over_explicit = []
            if len(all_implicit) < len(explicit):  # We dropped a burst msg
                first_implicit, final_implicit = all_implicit[0], all_implicit[
                    -1]
                for m in explicit:
                    if m.stamp < first_implicit.stamp or m.stamp > final_implicit.stamp:
                        left_over_explicit.append(m)
                for m in left_over_explicit:
                    explicit.remove(m)

            size_diff = len(all_implicit) - len(explicit)
            indices = [x + size_diff for x in range(len(explicit))]
            for i in range(len(explicit)):
                start_ind = 0 if i == 0 else indices[i - 1]
                end_ind = indices[i]
                if start_ind == end_ind:
                    break
                search_times = [
                    x.stamp for x in all_implicit[start_ind:end_ind]
                ]
                diffs = [
                    abs((x - explicit[i].stamp).to_sec()) for x in search_times
                ]
                best_ind = np.argmin(diffs) + start_ind
                indices[i] = best_ind
            # print("Indices: {}".format(indices))
            for i in range(len(indices)):
                all_implicit[indices[i]] = explicit[i]
            implicit_cnt += (len(all_implicit) - len(indices))
            explicit_cnt += len(indices) + len(left_over_explicit)
            # print(all_implicit)

            new_buffer.extend(all_implicit)
            new_buffer.extend(left_over_explicit)

        return new_buffer

    def catch_up(self, start_ind):
        """
        Rewinds the filter and brings it up to the current momment in time
        """
        if self.is_main_filter:
            print("################## Starting Index: {} ################".
                  format(start_ind))

        self.explicit_count = 0

        ledger = deepcopy(self.ledger)
        # print("DT: {}".format(self.delta_multiplier))
        # print(ledger[start_ind]["P_prior"])

        if ledger[start_ind]["x_hat_prior"] is None or ledger[start_ind][
                "P_prior"] is None:
            start_ind -= 1
            # print("Start index: {}".format(start_ind))

        # Reset the ledger
        self.ledger = {}
        for i in range(1, start_ind):
            self.ledger[i] = ledger[i]
        self._add_block()

        # Reset the filter
        # self.filter = deepcopy(self.original_filter)

        self.filter.x_hat = ledger[start_ind]["x_hat_prior"]
        self.filter.P = ledger[start_ind]["P_prior"]

        for i_step in range(start_ind, len(ledger)):
            meas_list = ledger[i_step]["meas"]
            update_time = ledger[i_step]["time"]
            u = ledger[i_step]["u"]
            Q = ledger[i_step]["Q"]
            nav_mean = ledger[i_step]["nav_mean"]
            nav_cov = ledger[i_step]["nav_cov"]

            for meas in meas_list:
                self.add_meas(meas)
            self.update(update_time, u, Q, nav_mean, nav_cov)

    def get_asset_estimate(self, asset):
        asset_id = self.asset2id[asset]
        begin_ind = asset_id * self.num_ownship_states
        end_ind = (asset_id + 1) * self.num_ownship_states
        asset_mean = self.filter.x_hat[begin_ind:end_ind, 0]
        asset_unc = self.filter.P[begin_ind:end_ind, begin_ind:end_ind]
        return deepcopy(asset_mean), deepcopy(asset_unc)

    def _get_meas_et_delta(self, meas_type):
        """Gets the delta trigger for the measurement

        Arguments:
            meas_type {str} -- The measurement type

        Raises:
            KeyError: ros_meas.meas_type not found in the delta_codebook_table

        Returns:
            float -- the delta trigger scaled by the filter's delta multiplier
        """
        # Match root measurement type e.g. "modem_range" with "modem_range_implicit"
        for mt in self.delta_codebook_table:
            if mt in meas_type:
                return self.delta_codebook_table[mt] * self.delta_multiplier
        raise KeyError("Measurement Type " + meas_type +
                       " not found in self.delta_codebook_table")
예제 #5
0
class LedgerFilter:
    """Records filter inputs and makes available an event triggered buffer. """    

    def __init__(self, num_ownship_states, x0, P0, buffer_capacity, meas_space_table, missed_meas_tolerance_table, delta_codebook_table, delta_multiplier, is_main_filter, my_id):
        """Constructor

        Arguments:
            num_ownship_states {int} -- Number of ownship states for each asset
            x0 {np.ndarray} -- initial states
            P0 {np.ndarray} -- initial uncertainty
            buffer_capacity {int} -- capacity of measurement buffer
            meas_space_table {dict} -- Hash that stores how much buffer space a measurement takes up. Str (meas type) -> int (buffer space)
                Must have key entries "bookend", "bookstart" to indicate space needed for measurement implicitness filling in
            missed_meas_tolerance_table {dict} -- Hash that determines how many measurements of each type do we need to miss before indicating a bookend
            delta_codebook_table {dict} -- Hash thatp stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger)
            delta_multiplier {float} -- Delta trigger constant multiplier for this filter
            is_main_filter {bool} -- Is this filter a common or main filter (if main the meas buffer does not matter)
            my_id {int} -- ID# of the current asset (typically 0)
        """
        if delta_multiplier <= 0:
            raise ValueError("Delta Multiplier must be greater than 0")

        self.original_estimate = [deepcopy(x0), deepcopy(P0)]
        self.delta_codebook_table = delta_codebook_table
        self.delta_multiplier = delta_multiplier
        self.buffer = MeasurementBuffer(meas_space_table, buffer_capacity)
        self.missed_meas_tolerance_table = missed_meas_tolerance_table
        self.is_main_filter = is_main_filter
        self.filter = ETFilter(my_id, num_ownship_states, 3, x0, P0, True)
        self.my_id = my_id

        # Initialize Ledgers
        self.ledger_meas = [] # In internal measurement form
        self.ledger_control = [] ## elements with [u, Q, time_delta, use_control_input]
        self.ledger_ci = [] ## Covariance Intersection ledger, each element is of form [x, P]
        self.ledger_update_times = [] ## Update times of when correction step executed
        self.expected_measurements = {} # When we don't receive an expected measurement we need to insert a "bookend" into the measurement buffer

        # Initialize first element of ledgers
        self.ledger_meas.append([])
        self.ledger_control.append([])
        self.ledger_ci.append([])

    def add_meas(self, ros_meas, src_id, measured_id, delta_multiplier=THIS_FILTERS_DELTA, force_fuse=True):
        """Adds and records a measurement to the filter

        Measurements after last correction step time will be fused at next correction step
            measurements before will be recorded and fused in catch_up()

        Arguments:
            ros_meas {etddf.Measurement.msg} -- The measurement in ROS form
            src_id {int} -- asset ID that took the measurement
            measured_id {int} -- asset ID that was measured (can be any value for ownship measurement)

        Keyword Arguments:
            delta_multiplier {float} -- Delta multiplier to use for this measurement (default: {THIS_FILTERS_DELTA})
            force_fuse {bool} -- If measurement is in the past, fuse it on the next update step anyway (default: {True})
                Note: the ledger will still reflect the correct measurement time
        """
        # Get the delta trigger for this measurement
        et_delta = self._get_meas_et_delta(ros_meas)

        # Check if we're not using a standard delta_multiplier
        if delta_multiplier != THIS_FILTERS_DELTA:
            et_delta = (et_delta / self.delta_multiplier) * delta_multiplier # Undo delta multiplication and scale et_delta by new multiplier

        # Get the update time index of the measurement
        time_index = self._get_time_index(ros_meas.stamp)

        # Convert ros_meas to an implicit or explicit internal measurement
        meas = self._get_internal_meas_from_ros_meas(ros_meas, src_id, measured_id, et_delta)
        orig_meas = meas

        # Common filter with delta tiering
        if (not self.is_main_filter and time_index==FUSE_MEAS_NEXT_UPDATE) and src_id == self.my_id:

            # Check if this measurement is allowed to be sent implicitly
            l = [x for x in MEASUREMENT_TYPES_NOT_SHARED if x in ros_meas.meas_type]
            if not l:
                # Check for Implicit Update
                if self.filter.check_implicit(meas):

                    # Check if this is the first of the measurement stream, if so, insert a bookstart
                    bookstart = meas.__class__.__name__ not in self.expected_measurements.keys()
                    
                    if bookstart:
                        self.buffer.insert_marker(ros_meas, ros_meas.stamp, bookstart=True)

                    meas = Asset.get_implicit_msg_equivalent(meas)
                    
                # Fuse explicitly
                else:
                    # TODO Check for overflow
                    self.buffer.add_meas(deepcopy(ros_meas))
                
                # Indicate we receieved our expected measurement
                missed_tolerance = deepcopy(self.missed_meas_tolerance_table[ros_meas.meas_type])
                self.expected_measurements[orig_meas.__class__.__name__] = [missed_tolerance, ros_meas]

        # Append to the ledger
        self.ledger_meas[time_index].append(meas)

        # Fuse on next timestamp
        if time_index == FUSE_MEAS_NEXT_UPDATE or force_fuse:
            self.filter.add_meas(meas)
        else:
            pass # Measurement will be fused on delta_tier's catch_up()

    def predict(self, u, Q, time_delta=1.0, use_control_input=False):
        """Executes filter's prediction step

        Arguments:
            u {np.ndarray} -- control input (num_ownship_states / 2, 1)
            Q {np.ndarray} -- motion/process noise (nstates, nstates)

        Keyword Arguments:
            time_delta {float} -- Amount of time to predict in future (default: {1.0})
            use_control_input {bool} -- Whether to use control input or assume constant velocity (default: {False})
        """
        self.filter.predict(u, Q, time_delta, use_control_input)
        self.ledger_control[-1] = [u, Q, time_delta, use_control_input]

    def correct(self, update_time):
        """Execute Correction Step in filter

        Arguments:
            update_time {time} -- Update time to record on the ledger update times
        """

        # Check if we received all of the measurements we were expecting
        for emeas in self.expected_measurements.keys():
            [rx, ros_meas] = self.expected_measurements[emeas]

            # We have reached our tolerance on the number of updates without receiving this measurement
            if rx < 1:
                self.buffer.insert_marker(ros_meas, update_time, bookstart=False)
                del self.expected_measurements[emeas]
            else:
                self.expected_measurements[emeas] = [rx - 1, ros_meas]

        # Run correction step on filter
        self.filter.correct()
        self.ledger_update_times.append(update_time)

        # Initialize next element of ledgers
        self.ledger_meas.append([])
        self.ledger_control.append([])
        self.ledger_ci.append([])

    def convert(self, delta_multiplier):
        """Converts the filter to have a new delta multiplier
            
        Arguments:
            delta_multiplier {float} -- the delta multiplier of the new filter
        """
        self.delta_multiplier = delta_multiplier

    def check_overflown(self):
        """Checks whether the filter's buffer has overflown

        Returns:
            bool -- True if buffer has overflown
        """
        return self.buffer.check_overflown()

    def peek(self):
        """ Allows peeking of the buffer

        Returns:
            list -- the current state of the buffer
        """
        return self.buffer.peek()

    def flush_buffer(self, final_time):
        """Returns the event triggered buffer

        Arguments:
            final_time {time} -- the last time measurements were considered to be added to the buffer 

        Returns:
            list -- the flushed buffer of measurements
        """
        self.expected_measurements = {}
        return self.buffer.flush(final_time)

    def reset(self, buffer, ledger_update_times, ledger_meas, ledger_control=None, ledger_ci=None):
        """Resets a ledger filter with the inputted ledgers

        Arguments:
            buffer {MeasurementBuffer} -- Measurement buffer to be preserved
            ledger_update_times {list} -- Update times
            ledger_meas {list} -- List of measurements at each update time

        Keyword Arguments:
            ledger_control {list} -- List of control inputs (default: {None})
            ledger_ci {list} -- List of covariance intersections (default: {None})

        Raises:
            ValueError: lengths of ledgers do not match
        """
        self.buffer = deepcopy(buffer)
        self.ledger_update_times = deepcopy(ledger_update_times)

        # Measurement Ledger
        self.ledger_meas = deepcopy(ledger_meas)
        if len(self.ledger_meas)-1 != len(self.ledger_update_times):
            raise ValueError("Meas Ledger does not match length of update times!")

        # Control Input Ledger
        if ledger_control is not None:
            self.ledger_control = ledger_control
            if len(self.ledger_control)-1 != len(self.ledger_update_times):
                raise ValueError("Control Ledger does not match length of update times!")
        else:
            # Initialize with empty lists
            self.ledger_control = [[] for _ in range(len(self.ledger_update_times))]
            if not self.ledger_control:
                self.ledger_control = [[]]

        # Covariance intersection ledger
        if ledger_ci is not None:
            self.ledger_ci = ledger_ci
            if len(self.ledger_ci)-1 != len(self.ledger_update_times):
                raise ValueError("CI Ledger does not match length of update times!")
        else:
            # Initialize with empty lists
            self.ledger_ci = [[] for _ in range(len(self.ledger_update_times))]
        
    def _get_meas_et_delta(self, ros_meas):
        """Gets the delta trigger for the measurement

        Arguments:
            ros_meas {etddf.Measurement.msg} -- The measurement in ROS form

        Raises:
            KeyError: ros_meas.meas_type not found in the delta_codebook_table

        Returns:
            float -- the delta trigger scaled by the filter's delta multiplier
        """
        # Match root measurement type e.g. "modem_range" with "modem_range_implicit"
        for meas_type in self.delta_codebook_table.keys():
            if meas_type in ros_meas.meas_type:
                return self.delta_codebook_table[meas_type] * self.delta_multiplier
        raise KeyError("Measurement Type " + ros_meas.meas_type + " not found in self.delta_codebook_table")
    
    def _get_internal_meas_from_ros_meas(self, ros_meas, src_id, measured_id, et_delta):
        """Converts etddf/Measurement.msg (implicit or explicit) to a class in etddf/measurements.py

        Arguments:
            ros_meas {etddf.Measurement.msg} -- The measurement in ROS form
            src_id {int} -- asset ID that took the measurement
            measured_id {int} -- asset ID that was measured (can be any value for ownship measurement)
            et_delta {float} -- Delta trigger for this measurement

        Raises:
            NotImplementedError: Conversion between measurements forms has not been specified

        Returns:
            etddf.measurements.Explicit -- measurement in filter's internal form
        """
        if "implicit" not in ros_meas.meas_type:
            if ros_meas.meas_type == "depth":
                return GPSz_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "modem_range" and not ros_meas.global_pose: # check global_pose list empty
                return Range_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "modem_range":
                return RangeFromGlobal_Explicit(measured_id, \
                                                np.array(ros_meas.global_pose).reshape(-1,1),\
                                                ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "modem_azimuth" and not ros_meas.global_pose: # check global_pose list empty
                return Azimuth_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "modem_azimuth":
                return AzimuthFromGlobal_Explicit(measured_id, \
                                                np.array(ros_meas.global_pose).reshape(-1,1),\
                                                ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "dvl_x":
                return Velocityx_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "dvl_y":
                return Velocityy_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta)
            # Sonar asset
            elif ros_meas.meas_type == "sonar_x" and not ros_meas.global_pose: 
                return LinRelx_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "sonar_y" and not ros_meas.global_pose:
                return LinRely_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "sonar_z":
                return LinRelz_Explicit(src_id, measured_id, ros_meas.data, ros_meas.variance, et_delta)
            # Sonar Landmark
            elif ros_meas.meas_type == "sonar_x" and ros_meas.global_pose:
                return GPSx_Explicit(src_id, ros_meas.global_pose[0] - ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "sonar_y" and ros_meas.global_pose:
                return GPSy_Explicit(src_id, ros_meas.global_pose[1] - ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "gps_x":
                return GPSx_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "gps_y":
                return GPSy_Explicit(src_id, ros_meas.data, ros_meas.variance, et_delta)
            else:
                raise NotImplementedError(str(ros_meas))
        # Implicit Measurement
        else:
            if ros_meas.meas_type == "depth_implicit":
                return GPSz_Implicit(src_id, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "dvl_x_implicit":
                return Velocityx_Implicit(src_id, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "dvl_y_implicit":
                return Velocityy_Implicit(src_id, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "sonar_x_implicit":
                return LinRelx_Implicit(src_id, measured_id, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "sonar_y_implicit":
                return LinRely_Implicit(src_id, measured_id, ros_meas.variance, et_delta)
            elif ros_meas.meas_type == "sonar_z_implicit":
                return LinRelz_Implicit(src_id, measured_id, ros_meas.variance, et_delta)
            else:
                raise NotImplementedError(str(ros_meas))
    
    def _get_time_index(self, time_):
        """Converts a time to an update time index

        Uses the ledger of correction step times

        Arguments:
            time_ {time} -- Time to convert

        Returns:
            int -- corresponding index in the measurement,ci and control ledger
                if time_ > last update time --> returns FUSE_MEAS_NEXT_UPDATE
        """
        # Check if we're fusing at next measurement time
        if len(self.ledger_update_times) == 0 or time_ > self.ledger_update_times[-1]:
            return FUSE_MEAS_NEXT_UPDATE
        
        # Lookup on what index this corresponds to in the ledger_update_times
        # Note: len(ledger_meas/control/ci) is always 1 greater than len(ledger_update_times)
        # Therefore, the first if statement in this fxn is for filling that last/newest slot
        # This for loop then has a 1 to 1 correspondence: ledger_update_times[i] corresponds to ledger_meas/control/ci[i]
        # The subtraction and addition below of indices is for zero order holding all measurements between times
        # t1 and t2 to be associated with time t2
        for ind in reversed(range(len(self.ledger_update_times) - 1)):
            if time_ > self.ledger_update_times[ind]:
                return ind + 1
        return 0
예제 #6
0
    def catch_up(self, delta_multiplier, shared_buffer):
        """Updates main estimate and common estimate using the shared buffer

        Arguments:
            delta_multiplier {float} -- multiplier to scale et_delta's with
            shared_buffer {list} -- buffer shared from another asset
        Returns:
            int -- implicit measurement count in shared_buffer
            int -- explicit measurement count in this shared_buffer
        """
        # Fill in implicit measurements in the buffer and align the meas timestamps with our own
        new_buffer, next_ledger_time_index = self._fillin_buffer(shared_buffer)
        implicit_meas_cnt = 0
        explicit_meas_cnt = 0

        # Add all measurements in buffer to ledgers of all ledger_filters
        for meas in new_buffer:
            self.add_meas(meas, delta_multiplier, force_fuse=False)
            if "implicit" in meas.meas_type:
                implicit_meas_cnt += 1
            else:
                explicit_meas_cnt += 1

        common_filters = {}
        for mult in self.delta_tiers.keys():
            my_id = self.delta_tiers[mult].filter.my_id
            [x0, P0] = self.delta_tiers[mult].original_estimate
            common_filters[mult] = ETFilter(my_id, self.num_ownship_states, 3,
                                            x0, P0, True)

        # Initialize asset's main filter
        # Pair the main filter with the etfilter the other asset chose and use to update the main filter
        my_id = self.main_filter.filter.my_id
        [x0, P0] = self.main_filter.original_estimate
        other_assets_common = {my_id: common_filters[delta_multiplier]}
        main_filter = ETFilter_Main(my_id, self.num_ownship_states, 3, x0, P0,
                                    True, other_assets_common)

        # Extract full ledgers
        common_meas_ledger = {}
        for mult in self.delta_tiers.keys():
            common_meas_ledger[mult] = self.delta_tiers[mult].ledger_meas
        main_control_ledger = self.main_filter.ledger_control
        main_ledger_meas = self.main_filter.ledger_meas
        # TODO add covariance intersection support (happens before correction)
        main_ci_ledger = self.main_filter.ledger_meas

        # Grab lock, no updates for right now
        # Initialize a new main and common filters (all are etfilters) using original estimate
        for i_ledge in range(len(self.main_filter.ledger_update_times)):

            [u, Q, delta_time, _] = main_control_ledger[i_ledge]

            for mult in common_filters.keys():
                common_filters[mult].predict(u,
                                             Q,
                                             delta_time,
                                             use_control_input=False)
                ledger_meas = common_meas_ledger[mult][i_ledge]
                for meas in ledger_meas:
                    common_filters[mult].add_meas(meas)
                common_filters[mult].correct()

            main_filter.predict(u, Q, delta_time, use_control_input=True)
            for meas in main_ledger_meas[i_ledge]:
                main_filter.add_meas(meas)
            main_filter.correct()

        # Trim ledgers
        if next_ledger_time_index != len(self.main_filter.ledger_update_times):
            ledger_update_times = self.main_filter.ledger_update_times[
                next_ledger_time_index:]
            for mult in common_meas_ledger.keys():
                common_meas_ledger[mult] = common_meas_ledger[mult][
                    next_ledger_time_index:]
            main_ledger_meas = main_ledger_meas[next_ledger_time_index:]
            main_control_ledger = main_control_ledger[next_ledger_time_index:]
        else:
            ledger_update_times = []
            for mult in common_meas_ledger.keys():
                common_meas_ledger[mult] = [[]]
            main_ledger_meas = [[]]
            main_control_ledger = [[]]

        ### Reset the ledger filters ###

        # Reset the delta tier filters
        for multiplier in self.delta_tiers.keys():

            # Caught up estimate becomes new initial estimate
            x0 = common_filters[multiplier].x_hat
            P0 = common_filters[multiplier].P

            buf = deepcopy(self.delta_tiers[multiplier].buffer)
            # Instantiate new delta tier
            self.delta_tiers[multiplier] = LedgerFilter(
                self.num_ownship_states, x0, P0, \
                self.buffer_capacity, self.meas_space_table, \
                self.missed_meas_tolerance_table, \
                self.delta_codebook_table, multiplier, \
                False, self.asset2id[self.my_name]
            )
            self.delta_tiers[multiplier].reset(buf, ledger_update_times,
                                               common_meas_ledger[multiplier])

        ### Reset the main filter ###

        # Caught up estimate becomes new initial estimate
        x0 = main_filter.x_hat
        P0 = main_filter.P
        mainbuf = deepcopy(self.main_filter.buffer)
        # Instantiate new Main Filter
        self.main_filter = LedgerFilter(
            self.num_ownship_states, x0, P0, \
            self.buffer_capacity, self.meas_space_table, \
            self.missed_meas_tolerance_table, \
            self.delta_codebook_table, 1.0, \
            True, self.asset2id[self.my_name]
        )
        self.main_filter.reset(mainbuf, ledger_update_times, main_ledger_meas,
                               main_control_ledger)

        return implicit_meas_cnt, explicit_meas_cnt
예제 #7
0
class MostRecent:
    """Windowed Communication Event Triggered Communication

    Provides a buffer that can be pulled and received from another. Just shares the N most recent measurements of another agent
    """

    def __init__(self, num_ownship_states, x0, P0, buffer_capacity, meas_space_table, delta_codebook_table, delta_multipliers, asset2id, my_name, default_meas_variance):
        """Constructor

        Arguments:
            num_ownship_states {int} -- Number of ownship states for each asset
            x0 {np.ndarray} -- initial states
            P0 {np.ndarray} -- initial uncertainty
            buffer_capacity {int} -- capacity of measurement buffer
            meas_space_table {dict} -- Hash that stores how much buffer space a measurement takes up. Str (meas type) -> int (buffer space)
            delta_codebook_table {dict} -- Hash that stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger)
            delta_multipliers {list} -- List of delta trigger multipliers
            asset2id {dict} -- Hash to get the id number of an asset from the string name
            my_name {str} -- Name to loopkup in asset2id the current asset's ID#
            default_meas_variance {dict} -- Hash to get measurement variance
        """
        self.meas_ledger = []
        self.asset2id = asset2id
        self.my_name = my_name
        self.default_meas_variance = default_meas_variance

        self.filter = ETFilter(asset2id[my_name], num_ownship_states, 3, x0, P0, True)

        # Remember for instantiating new LedgerFilters
        self.num_ownship_states = num_ownship_states
        self.buffer_capacity = buffer_capacity
        self.meas_space_table = meas_space_table
        self.last_update_time = None

    def add_meas(self, ros_meas, common=False):
        """Adds a measurement to filter

        Arguments:
            ros_meas {etddf.Measurement.msg} -- Measurement taken

        Keyword Arguments:
            delta_multiplier {int} -- not used (left to keep consistent interface)
            force_fuse {bool} -- not used
        """
        src_id = self.asset2id[ros_meas.src_asset]
        if ros_meas.measured_asset in self.asset2id.keys():
            measured_id = self.asset2id[ros_meas.measured_asset]
        elif ros_meas.measured_asset == "":
            measured_id = -1 #self.asset2id["surface"]
        else:
            rospy.logerr("ETDDF doesn't recognize: " + ros_meas.measured_asset + " ... ignoring")
            return
        meas = get_internal_meas_from_ros_meas(ros_meas, src_id, measured_id)
        self.filter.add_meas(meas)
        self.meas_ledger.append(ros_meas)

    @staticmethod
    def run_covariance_intersection(xa, Pa, xb, Pb):
        """Runs covariance intersection on the two estimates A and B

        Arguments:
            xa {np.ndarray} -- mean of A
            Pa {np.ndarray} -- covariance of A
            xb {np.ndarray} -- mean of B
            Pb {np.ndarray} -- covariance of B
        
        Returns:
            c_bar {np.ndarray} -- intersected estimate
            Pcc {np.ndarray} -- intersected covariance
        """
        Pa_inv = np.linalg.inv(Pa)
        Pb_inv = np.linalg.inv(Pb)

        fxn = lambda omega: np.trace(np.linalg.inv(omega*Pa_inv + (1-omega)*Pb_inv))
        omega_optimal = scipy.optimize.minimize_scalar(fxn, bounds=(0,1), method="bounded").x

        # print("Omega: {}".format(omega_optimal)) # We'd expect a value of 1

        Pcc = np.linalg.inv(omega_optimal*Pa_inv + (1-omega_optimal)*Pb_inv)
        c_bar = Pcc.dot( omega_optimal*Pa_inv.dot(xa) + (1-omega_optimal)*Pb_inv.dot(xb))

        jump = max( [np.linalg.norm(c_bar - xa), np.linalg.norm(c_bar - xb)] )

        if jump > 10: # Think this is due to a floating point error in the inversion
            print("!!!!!!!!!!! BIG JUMP!!!!!!!")
            print(xa)
            print(xb)
            print(c_bar)
            print(omega_optimal)
            print(Pa)
            print(Pb)
            print(Pcc)

        return c_bar.reshape(-1,1), Pcc

    def psci(self, x_prior, P_prior, c_bar, Pcc):
        """ Partial State Update all other states of the filter using the result of CI

        Arguments:
            x_prior {np.ndarray} -- This filter's prior estimate (over common states)
            P_prior {np.ndarray} -- This filter's prior covariance 
            c_bar {np.ndarray} -- intersected estimate
            Pcc {np.ndarray} -- intersected covariance

        Returns:
            None
            Updates self.main_filter.filter.x_hat and P, the delta tier's primary estimate
        """
        # Full state estimates
        x = self.filter.x_hat
        P = self.filter.P

        D_inv = np.linalg.inv(Pcc) - np.linalg.inv(P_prior)
        D_inv_d = np.dot( np.linalg.inv(Pcc), c_bar) - np.dot( np.linalg.inv(P_prior), x_prior)
        
        my_id = self.asset2id[self.my_name]
        begin_ind = my_id*self.num_ownship_states
        end_ind = (my_id+1)*self.num_ownship_states

        info_vector = np.zeros( x.shape )
        info_vector[begin_ind:end_ind] = D_inv_d

        info_matrix = np.zeros( P.shape )
        info_matrix[begin_ind:end_ind, begin_ind:end_ind] = D_inv

        posterior_cov = np.linalg.inv( np.linalg.inv( P ) + info_matrix )
        tmp = np.dot(np.linalg.inv( P ), x) + info_vector
        posterior_state = np.dot( posterior_cov, tmp )

        self.filter.x_hat = posterior_state
        self.filter.P = posterior_cov

    def intersect(self, x, P):
        """Runs covariance intersection with main filter's estimate

        Arguments:
            x {np.ndarray} -- other filter's mean
            P {np.ndarray} -- other filter's covariance

        Returns:
            c_bar {np.ndarray} -- intersected estimate
            Pcc {np.ndarray} -- intersected covariance
        """

        my_id = self.asset2id[self.my_name]

        # Slice out overlapping states in main filter
        begin_ind = my_id*self.num_ownship_states
        end_ind = (my_id+1)*self.num_ownship_states
        x_prior = self.filter.x_hat[begin_ind:end_ind].reshape(-1,1)
        P_prior = self.filter.P[begin_ind:end_ind,begin_ind:end_ind]
        P_prior = P_prior.reshape(self.num_ownship_states, self.num_ownship_states)
        
        c_bar, Pcc = MostRecent.run_covariance_intersection(x, P, x_prior, P_prior)
        
        # Update main filter states
        if Pcc.shape != self.filter.P.shape:
            self.psci(x_prior, P_prior, c_bar, Pcc)
            # self.filter.x_hat[begin_ind:end_ind] = c_bar
            # self.filter.P[begin_ind:end_ind,begin_ind:end_ind] = Pcc
        else:
            self.filter.x_hat = c_bar
            self.filter.P = Pcc

        return c_bar, Pcc

    def _add_variances(self, buffer):
        for msg in buffer:
            if "_burst" in msg.meas_type:
                meas_type = msg.meas_type.split("_burst")[0]
            else:
                meas_type = msg.meas_type

            msg.variance = self.default_meas_variance[meas_type] * 2.0
        return buffer

    def catch_up(self, index):
        pass

    def receive_buffer(self, buffer, mult, src_asset):
        """Updates estimate based on buffer

        Arguments:
            delta_multiplier {float} -- multiplier to scale et_delta's with
            shared_buffer {list} -- buffer shared from another asset
        Returns:
            int -- implicit measurement count in shared_buffer
            int -- explicit measurement count in this shared_buffer
        """
        buffer = self._add_variances(buffer)
        # buffer = self._add_etdeltas(buffer, delta_multiplier)

        for meas in buffer: # Fuse all of the measurements now
            self.add_meas(meas)
        return 0, len(buffer)

    def pull_buffer(self):
        """Pulls all measurements that'll fit

        Returns:
            multiplier {float} -- the delta multiplier that was chosen
            buffer {list} -- the buffer of ros measurements
        """
        buffer = []
        cost = 0
        ind = -1
        while abs(ind) <= len(self.meas_ledger):
            new_meas = self.meas_ledger[ind]
            space = self.meas_space_table[new_meas.meas_type]
            if cost + space <= self.buffer_capacity:
                if "sonar_z" not in new_meas.meas_type and "modem" not in new_meas.meas_type and "gps" not in new_meas.meas_type:
                    buffer.append(new_meas)
                    cost += space
            else:
                break
            ind -= 1
        self.meas_ledger = []
        return 1, buffer

    def update(self, update_time, u, Q, nav_mean, nav_cov):
        """Execute Prediction & Correction Step in filter

        Arguments:
            update_time {time} -- Update time to record on the ledger update times
            u {np.ndarray} -- control input (num_ownship_states / 2, 1)
            Q {np.ndarray} -- motion/process noise (nstates, nstates)
            nav filter mean
            nav filter covariance
        """
        if self.last_update_time is not None:
            time_delta = (update_time - self.last_update_time).to_sec()
            self.filter.predict(u, Q, time_delta, use_control_input=False)

        # Run correction step on filter
        self.filter.correct()

        # Intersect
        c_bar, Pcc = None, None
        if nav_mean is not None and nav_cov is not None:
            # print("***************************8 Intersecting **********************************")
            c_bar, Pcc = self.intersect(nav_mean, nav_cov)

        self.last_update_time = update_time

        return c_bar, Pcc

    def get_asset_estimate(self, asset_name):
        """Gets main filter's estimate of an asset

        Arguments:
            asset_name {str} -- Name of asset

        Returns
            np.ndarray -- Mean estimate of asset (num_ownship_states, 1)
            np.ndarray -- Covariance of estimate of asset (num_ownship_states, num_ownship_states)
        """
        asset_id = self.asset2id[asset_name]
        begin_ind = asset_id*self.num_ownship_states
        end_ind = (asset_id+1)*self.num_ownship_states
        asset_mean = self.filter.x_hat[begin_ind:end_ind,0]
        asset_unc = self.filter.P[begin_ind:end_ind,begin_ind:end_ind]
        return deepcopy(asset_mean), deepcopy(asset_unc)

    def debug_print_buffers(self):
        return self.meas_ledger