예제 #1
0
파일: bubble_map.py 프로젝트: tarah28/ete
def get_example_tree():
    # Random tree
    t = Tree()
    t.populate(20, random_branches=True)

    # Some random features in all nodes
    for n in t.traverse():
        n.add_features(weight=random.randint(0, 50))

    # Create an empty TreeStyle
    ts = TreeStyle()

    # Set our custom layout function
    ts.layout_fn = layout

    # Draw a tree
    ts.mode = "c"

    # We will add node names manually
    ts.show_leaf_name = False
    # Show branch data
    ts.show_branch_length = True
    ts.show_branch_support = True

    return t, ts
예제 #2
0
def get_example_tree():

    # Set dashed blue lines in all leaves
    nst1 = NodeStyle()
    nst1["bgcolor"] = "LightSteelBlue"
    nst2 = NodeStyle()
    nst2["bgcolor"] = "Moccasin"
    nst3 = NodeStyle()
    nst3["bgcolor"] = "DarkSeaGreen"
    nst4 = NodeStyle()
    nst4["bgcolor"] = "Khaki"

    t = Tree("((((a1,a2),a3), ((b1,b2),(b3,b4))), ((c1,c2),c3));")
    for n in t.traverse():
        n.dist = 0

    n1 = t.get_common_ancestor("a1", "a2", "a3")
    n1.set_style(nst1)
    n2 = t.get_common_ancestor("b1", "b2", "b3", "b4")
    n2.set_style(nst2)
    n3 = t.get_common_ancestor("c1", "c2", "c3")
    n3.set_style(nst3)
    n4 = t.get_common_ancestor("b3", "b4")
    n4.set_style(nst4)
    ts = TreeStyle()
    ts.layout_fn = layout
    ts.show_leaf_name = False

    ts.mode = "c"
    ts.root_opening_factor = 1
    return t, ts
예제 #3
0
def get_example_tree():
    # Random tree
    t = Tree()
    t.populate(20, random_branches=True)

    # Some random features in all nodes
    for n in t.traverse():
        n.add_features(weight=random.randint(0, 50))

    # Create an empty TreeStyle
    ts = TreeStyle()

    # Set our custom layout function
    ts.layout_fn = layout

    # Draw a tree 
    ts.mode = "c"

    # We will add node names manually
    ts.show_leaf_name = False
    # Show branch data
    ts.show_branch_length = True
    ts.show_branch_support = True

    return t, ts
예제 #4
0
def get_example_tree():

    # Set dashed blue lines in all leaves
    nst1 = NodeStyle()
    nst1["bgcolor"] = "LightSteelBlue"
    nst2 = NodeStyle()
    nst2["bgcolor"] = "Moccasin"
    nst3 = NodeStyle()
    nst3["bgcolor"] = "DarkSeaGreen"
    nst4 = NodeStyle()
    nst4["bgcolor"] = "Khaki"


    t = Tree("((((a1,a2),a3), ((b1,b2),(b3,b4))), ((c1,c2),c3));")
    for n in t.traverse():
        n.dist = 0
    
    n1 = t.get_common_ancestor("a1", "a2", "a3")
    n1.set_style(nst1)
    n2 = t.get_common_ancestor("b1", "b2", "b3", "b4")
    n2.set_style(nst2)
    n3 = t.get_common_ancestor("c1", "c2", "c3")
    n3.set_style(nst3)
    n4 = t.get_common_ancestor("b3", "b4")
    n4.set_style(nst4)
    ts = TreeStyle()
    ts.layout_fn = layout
    ts.show_leaf_name = False

    ts.mode = "c"
    ts.root_opening_factor = 1
    return t, ts
예제 #5
0
def get_example_tree():
    t = Tree()
    ts = TreeStyle()
    ts.layout_fn = layout
    ts.mode = "r"
    ts.show_leaf_name = False
    t.populate(10)
    return t, ts
예제 #6
0
def get_example_tree():
    t = Tree()
    ts = TreeStyle()
    ts.layout_fn = layout
    ts.mode = "r"
    ts.show_leaf_name = False
    t.populate(10)
    return t, ts
예제 #7
0
def get_example_tree():
    t = Tree()
    ts = TreeStyle()
    ts.layout_fn = layout
    ts.mode = "c"
    ts.show_leaf_name = True
    ts.min_leaf_separation = 15
    t.populate(100)
    return t, ts
예제 #8
0
def get_example_tree():
    t = Tree()
    ts = TreeStyle()
    ts.layout_fn = layout
    ts.mode = "c"
    ts.show_leaf_name = True
    ts.min_leaf_separation = 15
    t.populate(100)
    return t, ts
예제 #9
0
파일: utils.py 프로젝트: jhcepas/npr
def render_tree(tree, fname):
    # Generates tree snapshot
    npr_nodestyle = NodeStyle()
    npr_nodestyle["fgcolor"] = "red"
    for n in tree.traverse():
        if hasattr(n, "nodeid"):
            n.set_style(npr_nodestyle)
    ts = TreeStyle()
    ts.show_leaf_name = True
    ts.show_branch_length = True
    ts.show_branch_support = True
    ts.mode = "r"
    iterface = faces.TextFace("iter")
    ts.legend.add_face(iterface, 0)

    tree.dist = 0
    tree.sort_descendants()
    tree.render(fname, tree_style=ts, w=700)
예제 #10
0
파일: face_positions.py 프로젝트: xguse/ete
t.add_face(fixed, column=1, position="branch-right")
# Bind the precomputed style to the root node 



# ETE 2.1 has now support for general image properties 
I = TreeStyle()
# You can add faces to the tree image (without any node
# associated). They will be used as headers and foot notes of the
# aligned columns (aligned faces)
I.aligned_header.add_face(t1, column = 0)
I.aligned_header.add_face(t1, 1)
I.aligned_header.add_face(t1, 2)
I.aligned_header.add_face(t1, 3)
t1.hz_align = 1 # 0 left, 1 center, 2 right 
t1.border.width = 1

I.aligned_foot.add_face(t2, column = 0)
I.aligned_foot.add_face(t2, 1)
I.aligned_foot.add_face(t2, 2)
I.aligned_foot.add_face(t2, 3)
t2.hz_align = 1

# Set tree image style. Note that aligned header and foot is only
# visible in "rect" mode.

I.mode =  "r" #(rectangular)
I.tree_width= 50
t.show(mylayout, tree_style=I)

예제 #11
0
t, ts = Tree(), TreeStyle()
t.populate(5)
for n in t.traverse():
    n.dist = 0
temp_tface = TreeFace(t, ts)
n = main_tree.add_child()
n.add_face(temp_tface, 0, "aligned")

ts.optimal_scale_level = "full"
temp_tface = TreeFace(t, ts)
n = main_tree.add_child()
n.add_face(temp_tface, 0, "aligned")

ts = TreeStyle()
t.populate(5)
ts.mode = "c"
temp_tface = TreeFace(t, ts)
n = main_tree.add_child()
n.add_face(temp_tface, 0, "aligned")

ts.optimal_scale_level = "full"
temp_tface = TreeFace(t, ts)
n = main_tree.add_child()
n.add_face(temp_tface, 0, "aligned")

t, ts = Tree(), TreeStyle()
temp_tface = TreeFace(Tree(), ts)
n = main_tree.add_child()
n.add_face(temp_tface, 0, "aligned")

t, ts = Tree(), TreeStyle()
예제 #12
0
def ncbi_consensus(self, ):
    nsubtrees, ndups, subtrees = self.get_speciation_trees(map_features=["taxid"])

    valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(t, subtrees, show_tree=SHOW_TREE)


    avg_rf = []
    rf_max = 0.0 # reft.robinson_foulds(reft)[1]
    sum_size = 0.0

    #reftree = 


    for tn, subt in enumerate(subtrees):
        partial_rf = subt.robinson_foulds(reft, attr_t1="taxid")

        sptree_size = len(set([n.taxid for n in subt.iter_leaves()]))
        sum_size += sptree_size
        avg_rf.append((partial_rf[0]/float(partial_rf[1])) * sptree_size)
        common_names = len(partial_rf[3])
        max_size = max(max_size, sptree_size)
        rf_max = max(rf_max, partial_rf[1])


        rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist
        rf_std = numpy.std(avg_rf)
        rf_med = numpy.median(avg_rf)

        sizes_info = "%0.1f/%0.1f +- %0.1f" %( numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes))
        iter_values = [os.path.basename(tfile), nsubtrees, ndups,
                        broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med,
                       rf_std, rf_max, common_names] 
        print >>OUT, '|'.join(map(lambda x: str(x).strip().ljust(15), iter_values)) 
        fixed = sorted([n for n in prev_broken if n not in broken_clades])
        new_problems =  sorted(broken_clades - prev_broken)
        fixed_string = color(', '.join(fixed), "green") if fixed else ""
        problems_string = color(', '.join(new_problems), "red") if new_problems else ""
        OUT.write("    Fixed clades: %s\n" %fixed_string) if fixed else None
        OUT.write("    New broken:   %s\n" %problems_string) if new_problems else None
        prev_broken = broken_clades
        ENTRIES.append([os.path.basename(tfile), nsubtrees, ndups,
                        broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string])
        OUT.flush()
        if args.show_tree or args.render:
            ts = TreeStyle()
            ts.force_topology = True
            #ts.tree_width = 500
            ts.show_leaf_name = False
            ts.layout_fn = ncbi_layout 
            ts.mode = "r"
            t.dist = 0
            if args.show_tree:
                #if args.hide_monophyletic:
                #    tax2monophyletic = {}
                #    n2content = t.get_node2content()
                #    for node in t.traverse():
                #        term2count = defaultdict(int)
                #        for leaf in n2content[node]:
                #            if leaf.lineage:
                #                for term in leaf.lineage:
                #                    term2count[term] += 1
                #        expected_size = len(n2content)
                #        for term, count in term2count.iteritems():
                #            if count > 1
                    
                print "Showing tree..."
                t.show(tree_style=ts)
            else:
                t.render("img.svg", tree_style=ts, dpi=300)
            print "dumping color config"
            cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))

        if args.dump:
            cPickle.dump(t, open("ncbi_analysis.pkl", "w"))
예제 #13
0
파일: ete_ncbicomp.py 프로젝트: tarah28/ete
def main(argv):
    parser = argparse.ArgumentParser(
        description=__DESCRIPTION__,
        formatter_class=argparse.RawDescriptionHelpFormatter)
    # name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo.
    # action - The basic type of action to be taken when this argument is encountered at the command line. (store, store_const, store_true, store_false, append, append_const, version)
    # nargs - The number of command-line arguments that should be consumed. (N, ? (one or default), * (all 1 or more), + (more than 1) )
    # const - A constant value required by some action and nargs selections.
    # default - The value produced if the argument is absent from the command line.
    # type - The type to which the command-line argument should be converted.
    # choices - A container of the allowable values for the argument.
    # required - Whether or not the command-line option may be omitted (optionals only).
    # help - A brief description of what the argument does.
    # metavar - A name for the argument in usage messages.
    # dest - The name of the attribute to be added to the object returned by parse_args().

    parser.add_argument("--show",
                        dest="show_tree",
                        action="store_true",
                        help="""Display tree after the analysis.""")

    parser.add_argument("--render",
                        dest="render",
                        action="store_true",
                        help="""Render tree.""")

    parser.add_argument("--dump",
                        dest="dump",
                        action="store_true",
                        help="""Dump analysis""")

    parser.add_argument(
        "--explore",
        dest="explore",
        type=str,
        help="""Reads a previously analyzed tree and visualize it""")

    input_args = parser.add_mutually_exclusive_group()
    input_args.required = True
    input_args.add_argument("-t",
                            "--tree",
                            dest="target_tree",
                            nargs="+",
                            type=str,
                            help="""Tree file in newick format""")

    input_args.add_argument("-tf",
                            dest="tree_list_file",
                            type=str,
                            help="File with the list of tree files")

    parser.add_argument("--tax",
                        dest="tax_info",
                        type=str,
                        help="If the taxid attribute is not set in the"
                        " newick file for all leaf nodes, a tab file file"
                        " with the translation of name and taxid can be"
                        " provided with this option.")

    parser.add_argument(
        "--sp_delimiter",
        dest="sp_delimiter",
        type=str,
        help=
        "If taxid is part of the leaf name, delimiter used to split the string"
    )

    parser.add_argument(
        "--sp_field",
        dest="sp_field",
        type=int,
        default=0,
        help="field position for taxid after splitting leaf names")

    parser.add_argument("--ref",
                        dest="ref_tree",
                        type=str,
                        help="Uses ref tree to compute robinson foulds"
                        " distances of the different subtrees")

    parser.add_argument("--rf-only",
                        dest="rf_only",
                        action="store_true",
                        help="Skip ncbi consensus analysis")

    parser.add_argument(
        "--outgroup",
        dest="outgroup",
        type=str,
        nargs="+",
        help="A list of node names defining the trees outgroup")

    parser.add_argument("--is_sptree",
                        dest="is_sptree",
                        action="store_true",
                        help="Assumes no duplication nodes in the tree")

    parser.add_argument("-o",
                        dest="output",
                        type=str,
                        help="Writes result into a file")

    parser.add_argument("--tax2name", dest="tax2name", type=str, help="")

    parser.add_argument("--tax2track", dest="tax2track", type=str, help="")

    parser.add_argument("--dump_tax_info",
                        dest="dump_tax_info",
                        action="store_true",
                        help="")

    args = parser.parse_args(argv)

    if args.sp_delimiter:
        GET_TAXID = lambda x: x.split(args.sp_delimiter)[args.sp_field]
    else:
        GET_TAXID = None

    reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else ""
    if args.explore:
        print >> sys.stderr, "Reading tree from file:", args.explore
        t = cPickle.load(open(args.explore))
        ts = TreeStyle()
        ts.force_topology = True
        ts.show_leaf_name = False
        ts.layout_fn = ncbi_layout
        ts.mode = "r"
        t.show(tree_style=ts)
        print >> sys.stderr, "dumping color config"
        cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))
        sys.exit()

    if args.output:
        OUT = open(args.output, "w")
    else:
        OUT = sys.stdout

    print >> sys.stderr, "Dumping results into", OUT
    target_trees = []
    if args.tree_list_file:
        target_trees = [line.strip() for line in open(args.tree_list_file)]
    if args.target_tree:
        target_trees += args.target_tree
    prev_tree = None
    if args.tax2name:
        tax2name = cPickle.load(open(args.tax2name))
    else:
        tax2name = {}

    if args.tax2track:
        tax2track = cPickle.load(open(args.tax2track))
    else:
        tax2track = {}
    print len(tax2track), len(tax2name)
    header = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees",
              "Broken clades", "Clade sizes", "RF (avg)", "RF (med)",
              "RF (std)", "RF (max)", "Shared tips")
    print >> OUT, '|'.join([h.ljust(15) for h in header])
    if args.ref_tree:
        print >> sys.stderr, "Reading ref tree from", args.ref_tree
        reft = Tree(args.ref_tree, format=1)
    else:
        reft = None

    SHOW_TREE = False
    if args.show_tree or args.render:
        SHOW_TREE = True

    prev_broken = set()
    ENTRIES = []
    ncbi.connect_database()
    for tfile in target_trees:
        #print tfile
        t = PhyloTree(tfile, sp_naming_function=None)
        if GET_TAXID:
            for n in t.iter_leaves():
                n.name = GET_TAXID(n.name)

        if args.outgroup:
            if len(args.outgroup) == 1:
                out = t & args.outgroup[0]
            else:
                out = t.get_common_ancestor(args.outgroup)
                if set(out.get_leaf_names()) ^ set(args.outgroup):
                    raise ValueError("Outgroup is not monophyletic")

            t.set_outgroup(out)
        t.ladderize()

        if prev_tree:
            tree_compare(t, prev_tree)
        prev_tree = t

        if args.tax_info:
            tax2name, tax2track = annotate_tree_with_taxa(
                t, args.tax_info, tax2name, tax2track)
            if args.dump_tax_info:
                cPickle.dump(tax2track, open("tax2track.pkl", "w"))
                cPickle.dump(tax2name, open("tax2name.pkl", "w"))
                print "Tax info written into pickle files"
        else:
            for n in t.iter_leaves():
                spcode = n.name
                n.add_features(taxid=spcode)
                n.add_features(species=spcode)
            tax2name, tax2track = annotate_tree_with_taxa(
                t, None, tax2name, tax2track)

        # Split tree into species trees
        #subtrees =  t.get_speciation_trees()
        if not args.rf_only:
            #print "Calculating tree subparts..."
            t1 = time.time()
            if not args.is_sptree:
                subtrees = t.split_by_dups()
                #print "Subparts:", len(subtrees), time.time()-t1
            else:
                subtrees = [t]

            valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(
                t, subtrees, show_tree=SHOW_TREE)

            #print valid_subtrees, broken_subtrees, ncbi_mistakes, total_rf
        else:
            subtrees = []
            valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = 0, 0, 0, 0, 0, 0

        ndups = 0
        nsubtrees = len(subtrees)

        rf = 0
        rf_max = 0
        rf_std = 0
        rf_med = 0
        common_names = 0
        max_size = 0
        if reft and len(subtrees) == 1:
            rf = t.robinson_foulds(reft, attr_t1="realname")
            rf_max = rf[1]
            rf = rf[0]
            rf_med = rf

        elif reft:
            #print "Calculating avg RF..."
            nsubtrees, ndups, subtrees = t.get_speciation_trees(
                map_features=["taxid"])
            #print len(subtrees), "Sub-Species-trees found"
            avg_rf = []
            rf_max = 0.0  # reft.robinson_foulds(reft)[1]
            sum_size = 0.0
            print nsubtrees, "subtrees", ndups, "duplications"

            for ii, subt in enumerate(subtrees):
                print "\r%d" % ii,
                sys.stdout.flush()
                try:
                    partial_rf = subt.robinson_foulds(reft, attr_t1="taxid")
                except ValueError:
                    pass
                else:
                    sptree_size = len(
                        set([n.taxid for n in subt.iter_leaves()]))
                    sum_size += sptree_size
                    avg_rf.append(
                        (partial_rf[0] / float(partial_rf[1])) * sptree_size)
                    common_names = len(partial_rf[3])
                    max_size = max(max_size, sptree_size)
                    rf_max = max(rf_max, partial_rf[1])
                #print  partial_rf[:2]
            rf = numpy.sum(avg_rf) / float(sum_size)  # Treeko dist
            rf_std = numpy.std(avg_rf)
            rf_med = numpy.median(avg_rf)

        sizes_info = "%0.1f/%0.1f +- %0.1f" % (numpy.mean(broken_sizes),
                                               numpy.median(broken_sizes),
                                               numpy.std(broken_sizes))
        iter_values = [
            os.path.basename(tfile), nsubtrees, ndups, broken_subtrees,
            ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std,
            rf_max, common_names
        ]
        print >> OUT, '|'.join(
            map(lambda x: str(x).strip().ljust(15), iter_values))
        fixed = sorted([n for n in prev_broken if n not in broken_clades])
        new_problems = sorted(broken_clades - prev_broken)
        fixed_string = color(', '.join(fixed), "green") if fixed else ""
        problems_string = color(', '.join(new_problems),
                                "red") if new_problems else ""
        OUT.write("    Fixed clades: %s\n" % fixed_string) if fixed else None
        OUT.write("    New broken:   %s\n" %
                  problems_string) if new_problems else None
        prev_broken = broken_clades
        ENTRIES.append([
            os.path.basename(tfile), nsubtrees, ndups, broken_subtrees,
            ncbi_mistakes, broken_branches, sizes_info, fixed_string,
            problems_string
        ])
        OUT.flush()
        if args.show_tree or args.render:
            ts = TreeStyle()
            ts.force_topology = True
            #ts.tree_width = 500
            ts.show_leaf_name = False
            ts.layout_fn = ncbi_layout
            ts.mode = "r"
            t.dist = 0
            if args.show_tree:
                #if args.hide_monophyletic:
                #    tax2monophyletic = {}
                #    n2content = t.get_node2content()
                #    for node in t.traverse():
                #        term2count = defaultdict(int)
                #        for leaf in n2content[node]:
                #            if leaf.lineage:
                #                for term in leaf.lineage:
                #                    term2count[term] += 1
                #        expected_size = len(n2content)
                #        for term, count in term2count.iteritems():
                #            if count > 1

                print "Showing tree..."
                t.show(tree_style=ts)
            else:
                t.render("img.svg", tree_style=ts, dpi=300)
            print "dumping color config"
            cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))

        if args.dump:
            cPickle.dump(t, open("ncbi_analysis.pkl", "w"))

    print
    print
    HEADER = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees",
              "Broken clades", "Broken branches", "Clade sizes",
              "Fixed Groups", "New Broken Clades")
    print_table(ENTRIES, max_col_width=50, row_line=True, header=HEADER)

    if args.output:
        OUT.close()
예제 #14
0
def get_example_tree():
    t = Tree()
    t.populate(10)

    # Margins, alignment, border, background and opacity can now be set for any face
    rs1 = faces.TextFace("branch-right\nmargins&borders",
                         fsize=12,
                         fgcolor="#009000")
    rs1.margin_top = 10
    rs1.margin_bottom = 50
    rs1.margin_left = 40
    rs1.margin_right = 40
    rs1.border.width = 1
    rs1.background.color = "lightgreen"
    rs1.inner_border.width = 0
    rs1.inner_border.line_style = 1
    rs1.inner_border.color = "red"
    rs1.opacity = 0.6
    rs1.hz_align = 2  # 0 left, 1 center, 2 right
    rs1.vt_align = 1  # 0 left, 1 center, 2 right

    br1 = faces.TextFace("branch-right1", fsize=12, fgcolor="#009000")
    br2 = faces.TextFace("branch-right3", fsize=12, fgcolor="#009000")

    # New face positions (branch-top and branch-bottom)
    bb = faces.TextFace("branch-bottom 1", fsize=8, fgcolor="#909000")
    bb2 = faces.TextFace("branch-bottom 2", fsize=8, fgcolor="#909000")
    bt = faces.TextFace("branch-top 1", fsize=6, fgcolor="#099000")

    # And faces can also be used as headers or foot notes of aligned
    # columns
    t1 = faces.TextFace("Header Face", fsize=12, fgcolor="#aa0000")
    t2 = faces.TextFace("Footer Face", fsize=12, fgcolor="#0000aa")

    # Attribute faces can now contain prefix and suffix fixed text
    aligned = faces.AttrFace("name",
                             fsize=12,
                             fgcolor="RoyalBlue",
                             text_prefix="Aligned (",
                             text_suffix=")")
    # horizontal and vertical alignment per face
    aligned.hz_align = 1  # 0 left, 1 center, 2 right
    aligned.vt_align = 1

    # Node style handling is no longer limited to layout functions. You
    # can now create fixed node styles and use them many times, save them
    # or even add them to nodes before drawing (this allows to save and
    # reproduce an tree image design)
    style = NodeStyle()
    style["fgcolor"] = "Gold"
    style["shape"] = "square"
    style["size"] = 15
    style["vt_line_color"] = "#ff0000"
    t.set_style(style)
    # add a face to the style. This face will be render in any node
    # associated to the style.
    fixed = faces.TextFace("FIXED branch-right", fsize=11, fgcolor="blue")
    t.add_face(fixed, column=1, position="branch-right")
    # Bind the precomputed style to the root node

    # ETE 2.1 has now support for general image properties
    ts = TreeStyle()

    # You can add faces to the tree image (without any node
    # associated). They will be used as headers and foot notes of the
    # aligned columns (aligned faces)
    ts.aligned_header.add_face(t1, column=0)
    ts.aligned_header.add_face(t1, 1)
    ts.aligned_header.add_face(t1, 2)
    ts.aligned_header.add_face(t1, 3)
    t1.hz_align = 1  # 0 left, 1 center, 2 right
    t1.border.width = 1

    ts.aligned_foot.add_face(t2, column=0)
    ts.aligned_foot.add_face(t2, 1)
    ts.aligned_foot.add_face(t2, 2)
    ts.aligned_foot.add_face(t2, 3)
    t2.hz_align = 1

    # Set tree image style. Note that aligned header and foot is only
    # visible in "rect" mode.

    ts.mode = "r"
    ts.scale = 10
    for node in t.traverse():
        # If node is a leaf, add the nodes name and a its scientific
        # name
        if node.is_leaf():
            node.add_face(aligned, column=0, position="aligned")
            node.add_face(aligned, column=1, position="aligned")
            node.add_face(aligned, column=3, position="aligned")
        else:
            node.add_face(bt, column=0, position="branch-top")
            node.add_face(bb, column=0, position="branch-bottom")
            node.add_face(bb2, column=0, position="branch-bottom")
            node.add_face(br1, column=0, position="branch-right")
            node.add_face(rs1, column=0, position="branch-right")
            node.add_face(br2, column=0, position="branch-right")

    return t, ts
예제 #15
0
application.CONFIG["DISPLAY"] = ":0" # This is the most common
                                     # configuration

# We extend the minimum WebTreeApplication with our own WSGI
# application
application.set_external_app_handler(example_app)

# Lets now apply our custom tree loader function to the main
# application 
application.set_tree_loader(my_tree_loader)

# And our layout as the default one to render trees
ts = TreeStyle()
ts.show_leaf_name = False
ts.layout_fn.append(main_layout)
ts.mode = "r"
ts.branch_vertical_margin = 5
#ts.scale = 20
application.set_tree_style(ts)
#application.set_default_layout_fn(main_layout)
application.set_tree_size(None, None)
# I want to make up how tree image in shown using a custrom tree
# renderer that adds much more HTML code
application.set_external_tree_renderer(tree_renderer)


# ==============================================================================
# ADD CUSTOM ACTIONS TO THE APPLICATION
#
# The function "register_action" allows to attach functionality to
# nodes in the image. All registered accions will be shown in the
예제 #16
0
def get_example_tree():
    t = Tree()
    t.populate(10)

    # Margins, alignment, border, background and opacity can now be set for any face
    rs1 = faces.TextFace("branch-right\nmargins&borders",
                         fsize=12, fgcolor="#009000")
    rs1.margin_top = 10
    rs1.margin_bottom = 50
    rs1.margin_left = 40
    rs1.margin_right = 40
    rs1.border.width = 1
    rs1.background.color = "lightgreen"
    rs1.inner_border.width = 0
    rs1.inner_border.line_style = 1
    rs1.inner_border.color= "red"
    rs1.opacity = 0.6
    rs1.hz_align = 2 # 0 left, 1 center, 2 right
    rs1.vt_align = 1 # 0 left, 1 center, 2 right

    br1 = faces.TextFace("branch-right1", fsize=12, fgcolor="#009000")
    br2 = faces.TextFace("branch-right3", fsize=12, fgcolor="#009000")

    # New face positions (branch-top and branch-bottom)
    bb = faces.TextFace("branch-bottom 1", fsize=8, fgcolor="#909000")
    bb2 = faces.TextFace("branch-bottom 2", fsize=8, fgcolor="#909000")
    bt = faces.TextFace("branch-top 1", fsize=6, fgcolor="#099000")

    # And faces can also be used as headers or foot notes of aligned
    # columns
    t1 = faces.TextFace("Header Face", fsize=12, fgcolor="#aa0000")
    t2 = faces.TextFace("Footer Face", fsize=12, fgcolor="#0000aa")

    # Attribute faces can now contain prefix and suffix fixed text
    aligned = faces.AttrFace("name", fsize=12, fgcolor="RoyalBlue",
                             text_prefix="Aligned (", text_suffix=")")
    # horizontal and vertical alignment per face
    aligned.hz_align = 1 # 0 left, 1 center, 2 right
    aligned.vt_align = 1 

    # Node style handling is no longer limited to layout functions. You
    # can now create fixed node styles and use them many times, save them
    # or even add them to nodes before drawing (this allows to save and
    # reproduce an tree image design)
    style = NodeStyle()
    style["fgcolor"] = "Gold"
    style["shape"] = "square"
    style["size"] = 15
    style["vt_line_color"] = "#ff0000"
    t.set_style(style)
    # add a face to the style. This face will be render in any node
    # associated to the style.
    fixed = faces.TextFace("FIXED branch-right", fsize=11, fgcolor="blue")
    t.add_face(fixed, column=1, position="branch-right")
    # Bind the precomputed style to the root node 

    # ETE 2.1 has now support for general image properties 
    ts = TreeStyle()

    # You can add faces to the tree image (without any node
    # associated). They will be used as headers and foot notes of the
    # aligned columns (aligned faces)
    ts.aligned_header.add_face(t1, column = 0)
    ts.aligned_header.add_face(t1, 1)
    ts.aligned_header.add_face(t1, 2)
    ts.aligned_header.add_face(t1, 3)
    t1.hz_align = 1 # 0 left, 1 center, 2 right 
    t1.border.width = 1

    ts.aligned_foot.add_face(t2, column = 0)
    ts.aligned_foot.add_face(t2, 1)
    ts.aligned_foot.add_face(t2, 2)
    ts.aligned_foot.add_face(t2, 3)
    t2.hz_align = 1

    # Set tree image style. Note that aligned header and foot is only
    # visible in "rect" mode.

    ts.mode =  "r"
    ts.scale = 10
    for node in t.traverse():
        # If node is a leaf, add the nodes name and a its scientific
        # name
        if node.is_leaf():
            node.add_face(aligned, column=0, position="aligned")
            node.add_face(aligned, column=1, position="aligned")
            node.add_face(aligned, column=3, position="aligned")
        else:
            node.add_face(bt, column=0, position="branch-top")
            node.add_face(bb, column=0, position="branch-bottom")
            node.add_face(bb2, column=0, position="branch-bottom")
            node.add_face(br1, column=0, position="branch-right")
            node.add_face(rs1, column=0, position="branch-right")
            node.add_face(br2, column=0, position="branch-right")
    
    return t, ts
예제 #17
0
def main(argv):
    parser = argparse.ArgumentParser(description=__DESCRIPTION__, 
                                     formatter_class=argparse.RawDescriptionHelpFormatter)
    # name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo.
    # action - The basic type of action to be taken when this argument is encountered at the command line. (store, store_const, store_true, store_false, append, append_const, version)
    # nargs - The number of command-line arguments that should be consumed. (N, ? (one or default), * (all 1 or more), + (more than 1) )
    # const - A constant value required by some action and nargs selections. 
    # default - The value produced if the argument is absent from the command line.
    # type - The type to which the command-line argument should be converted.
    # choices - A container of the allowable values for the argument.
    # required - Whether or not the command-line option may be omitted (optionals only).
    # help - A brief description of what the argument does.
    # metavar - A name for the argument in usage messages.
    # dest - The name of the attribute to be added to the object returned by parse_args().
    
    parser.add_argument("--show", dest="show_tree",
                        action="store_true", 
                        help="""Display tree after the analysis.""")
    
    parser.add_argument("--render", dest="render",
                        action="store_true", 
                        help="""Render tree.""")

    parser.add_argument("--dump", dest="dump",
                        action="store_true", 
                        help="""Dump analysis""")

    parser.add_argument("--explore", dest="explore",
                        type=str,
                        help="""Reads a previously analyzed tree and visualize it""")
    
    input_args = parser.add_mutually_exclusive_group()
    input_args.required=True
    input_args.add_argument("-t", "--tree", dest="target_tree",  nargs="+",
                        type=str,
                        help="""Tree file in newick format""")

    input_args.add_argument("-tf", dest="tree_list_file",
                        type=str, 
                        help="File with the list of tree files")
    
    parser.add_argument("--tax", dest="tax_info", type=str,
                        help="If the taxid attribute is not set in the"
                        " newick file for all leaf nodes, a tab file file"
                        " with the translation of name and taxid can be"
                        " provided with this option.")

    parser.add_argument("--sp_delimiter", dest="sp_delimiter", type=str,
                        help="If taxid is part of the leaf name, delimiter used to split the string")

    parser.add_argument("--sp_field", dest="sp_field", type=int, default=0,
                        help="field position for taxid after splitting leaf names")
    
    parser.add_argument("--ref", dest="ref_tree", type=str,
                        help="Uses ref tree to compute robinson foulds"
                        " distances of the different subtrees")

    parser.add_argument("--rf-only", dest="rf_only",
                        action = "store_true",
                        help="Skip ncbi consensus analysis")

    parser.add_argument("--outgroup", dest="outgroup",
                        type=str, nargs="+",
                        help="A list of node names defining the trees outgroup")
    
    parser.add_argument("--is_sptree", dest="is_sptree",
                        action = "store_true",
                        help="Assumes no duplication nodes in the tree")
    
    parser.add_argument("-o", dest="output", type=str,
                        help="Writes result into a file")

    parser.add_argument("--tax2name", dest="tax2name", type=str,
                        help="")
    
    parser.add_argument("--tax2track", dest="tax2track", type=str,
                        help="")
    
    parser.add_argument("--dump_tax_info", dest="dump_tax_info", action="store_true",
                        help="")
    
    args = parser.parse_args(argv)

    if args.sp_delimiter:
        GET_TAXID = lambda x: x.split(args.sp_delimiter)[args.sp_field]
    else:
        GET_TAXID = None
    
    reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else ""
    if args.explore:
        print >>sys.stderr, "Reading tree from file:", args.explore
        t = cPickle.load(open(args.explore))
        ts = TreeStyle()
        ts.force_topology = True
        ts.show_leaf_name = False
        ts.layout_fn = ncbi_layout 
        ts.mode = "r"
        t.show(tree_style=ts)
        print >>sys.stderr, "dumping color config"
        cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))
        sys.exit()
    
    if args.output:
        OUT = open(args.output, "w")
    else:
        OUT = sys.stdout

    print >>sys.stderr, "Dumping results into", OUT
    target_trees = []
    if args.tree_list_file:
        target_trees = [line.strip() for line in open(args.tree_list_file)]
    if args.target_tree:
        target_trees += args.target_tree
    prev_tree = None
    if args.tax2name:
        tax2name = cPickle.load(open(args.tax2name))
    else:
        tax2name = {}

    if args.tax2track:
        tax2track = cPickle.load(open(args.tax2track))
    else:
        tax2track = {}
    print len(tax2track), len(tax2name)
    header = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Clade sizes", "RF (avg)", "RF (med)", "RF (std)", "RF (max)", "Shared tips")
    print >>OUT, '|'.join([h.ljust(15) for h in header])
    if args.ref_tree:
        print >>sys.stderr, "Reading ref tree from", args.ref_tree
        reft = Tree(args.ref_tree, format=1)
    else:
        reft = None

    SHOW_TREE = False
    if args.show_tree or args.render:
        SHOW_TREE = True

        
    prev_broken = set()
    ENTRIES = []
    ncbi.connect_database()
    for tfile in target_trees:
        #print tfile
        t = PhyloTree(tfile, sp_naming_function=None)
        if GET_TAXID:
            for n in t.iter_leaves():
                n.name = GET_TAXID(n.name)
        
        if args.outgroup:
            if len(args.outgroup) == 1:
                out = t & args.outgroup[0]
            else:
                out = t.get_common_ancestor(args.outgroup)
                if set(out.get_leaf_names()) ^ set(args.outgroup):
                    raise ValueError("Outgroup is not monophyletic")
                
            t.set_outgroup(out)
        t.ladderize()

        if prev_tree:
            tree_compare(t, prev_tree)
        prev_tree = t
       
        
        if args.tax_info:
            tax2name, tax2track = annotate_tree_with_taxa(t, args.tax_info, tax2name, tax2track)
            if args.dump_tax_info:
                cPickle.dump(tax2track, open("tax2track.pkl", "w"))
                cPickle.dump(tax2name, open("tax2name.pkl", "w"))
                print "Tax info written into pickle files"
        else:
            for n in t.iter_leaves():
                spcode = n.name
                n.add_features(taxid=spcode)
                n.add_features(species=spcode)
            tax2name, tax2track = annotate_tree_with_taxa(t, None, tax2name, tax2track)
            
        # Split tree into species trees
        #subtrees =  t.get_speciation_trees()
        if not args.rf_only:
            #print "Calculating tree subparts..."
            t1 = time.time()
            if not args.is_sptree:
                subtrees =  t.split_by_dups()
                #print "Subparts:", len(subtrees), time.time()-t1
            else:
                subtrees = [t]

          
            valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(t, subtrees, show_tree=SHOW_TREE)
            
            #print valid_subtrees, broken_subtrees, ncbi_mistakes, total_rf
        else:
            subtrees = []
            valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = 0, 0, 0, 0, 0, 0
            
        ndups = 0
        nsubtrees = len(subtrees)
           
        rf = 0
        rf_max = 0
        rf_std = 0
        rf_med = 0
        common_names = 0
        max_size = 0
        if reft and len(subtrees) == 1:
            rf = t.robinson_foulds(reft, attr_t1="realname")
            rf_max = rf[1]
            rf = rf[0]
            rf_med = rf
            
        elif reft:
            #print "Calculating avg RF..."
            nsubtrees, ndups, subtrees = t.get_speciation_trees(map_features=["taxid"])
            #print len(subtrees), "Sub-Species-trees found"
            avg_rf = []
            rf_max = 0.0 # reft.robinson_foulds(reft)[1]
            sum_size = 0.0
            print nsubtrees, "subtrees", ndups, "duplications"

            for ii, subt in enumerate(subtrees):
                print "\r%d" %ii,
                sys.stdout.flush()
                try:
                    partial_rf = subt.robinson_foulds(reft, attr_t1="taxid")
                except ValueError:
                    pass
                else:
                    sptree_size = len(set([n.taxid for n in subt.iter_leaves()]))
                    sum_size += sptree_size
                    avg_rf.append((partial_rf[0]/float(partial_rf[1])) * sptree_size)
                    common_names = len(partial_rf[3])
                    max_size = max(max_size, sptree_size)
                    rf_max = max(rf_max, partial_rf[1])
                #print  partial_rf[:2]
            rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist
            rf_std = numpy.std(avg_rf)
            rf_med = numpy.median(avg_rf)

        sizes_info = "%0.1f/%0.1f +- %0.1f" %( numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes))
        iter_values = [os.path.basename(tfile), nsubtrees, ndups,
                        broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med,
                       rf_std, rf_max, common_names] 
        print >>OUT, '|'.join(map(lambda x: str(x).strip().ljust(15), iter_values)) 
        fixed = sorted([n for n in prev_broken if n not in broken_clades])
        new_problems =  sorted(broken_clades - prev_broken)
        fixed_string = color(', '.join(fixed), "green") if fixed else ""
        problems_string = color(', '.join(new_problems), "red") if new_problems else ""
        OUT.write("    Fixed clades: %s\n" %fixed_string) if fixed else None
        OUT.write("    New broken:   %s\n" %problems_string) if new_problems else None
        prev_broken = broken_clades
        ENTRIES.append([os.path.basename(tfile), nsubtrees, ndups,
                        broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string])
        OUT.flush()
        if args.show_tree or args.render:
            ts = TreeStyle()
            ts.force_topology = True
            #ts.tree_width = 500
            ts.show_leaf_name = False
            ts.layout_fn = ncbi_layout 
            ts.mode = "r"
            t.dist = 0
            if args.show_tree:
                #if args.hide_monophyletic:
                #    tax2monophyletic = {}
                #    n2content = t.get_node2content()
                #    for node in t.traverse():
                #        term2count = defaultdict(int)
                #        for leaf in n2content[node]:
                #            if leaf.lineage:
                #                for term in leaf.lineage:
                #                    term2count[term] += 1
                #        expected_size = len(n2content)
                #        for term, count in term2count.iteritems():
                #            if count > 1
                    
                print "Showing tree..."
                t.show(tree_style=ts)
            else:
                t.render("img.svg", tree_style=ts, dpi=300)
            print "dumping color config"
            cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))

        if args.dump:
            cPickle.dump(t, open("ncbi_analysis.pkl", "w"))
            
    print
    print
    HEADER = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Broken branches", "Clade sizes", "Fixed Groups", "New Broken Clades")
    print_table(ENTRIES, max_col_width = 50, row_line=True, header=HEADER)
            
    if args.output:
        OUT.close()
예제 #18
0
application.CONFIG["DISPLAY"] = ":0"  # This is the most common
# configuration

# We extend the minimum WebTreeApplication with our own WSGI
# application
application.set_external_app_handler(example_app)

# Lets now apply our custom tree loader function to the main
# application
application.set_tree_loader(my_tree_loader)

# And our layout as the default one to render trees
ts = TreeStyle()
ts.show_leaf_name = False
ts.layout_fn.append(main_layout)
ts.mode = "r"
ts.branch_vertical_margin = 5
#ts.scale = 20
application.set_tree_style(ts)
#application.set_default_layout_fn(main_layout)
application.set_tree_size(None, None)
# I want to make up how tree image in shown using a custrom tree
# renderer that adds much more HTML code
application.set_external_tree_renderer(tree_renderer)

# ==============================================================================
# ADD CUSTOM ACTIONS TO THE APPLICATION
#
# The function "register_action" allows to attach functionality to
# nodes in the image. All registered accions will be shown in the
# popup menu bound to the nodes and faces in the web image.
예제 #19
0
        T.opacity = 0.8
        # And place as a float face over the tree
        faces.add_face_to_node(T, node, 1, position="aligned")

# Random tree
t = Tree()
t.populate(20, random_branches=True)

# Some random features in all nodes
for n in t.traverse():
    n.add_features(weight=random.randint(0, 50))

# Create an empty TreeStyle
ts = TreeStyle()

# Set our custom layout function
ts.layout_fn = layout

# Draw a tree 
ts.mode = "c"

# We will add node names manually
ts.show_leaf_name = False
# Show branch data
ts.show_branch_length = True
ts.show_branch_support = True

t.render("tree_faces.png", w=600, dpi=300, tree_style=ts)
t.show(tree_style=ts)
 
예제 #20
0
    if node.is_leaf():
        #node.img_style["size"] = random.randint(50, 50)
        f = faces.TextFace("alignedFace", fsize=8, fgcolor="blue")
        #f = faces.AttrFace("name", fsize=random.randint(20,20))
        faces.add_face_to_node(f, node, 0, position="aligned")
        f.border.width = 0
        #f = faces.CircleFace(20, "red")
        #f = faces.AttrFace("name", fsize=20)
        f = faces.TextFace("NAME", fsize=10)
        #faces.add_face_to_node(f, node, 0, position="branch-right")
        f.border.width = 0
    #node.img_style["bgcolor"] = random_color()

#Tree().show()
ts = TreeStyle()
ts.mode = "c"
ts.layout_fn = layout 
ts.show_leaf_name = False
ts.arc_span = 340
ts.arc_start = -70
#ts.allow_face_overlap = True
#ts.show_branch_length = True
ts.draw_guiding_lines = False
ts.optimal_scale_level = "mid"
ts.extra_branch_line_color = "red"
ts.root_opening_factor = 0.50
ts.show_border = True
ts.scale = None
t = Tree()
t.populate(200, random_branches=True, branch_range=(0, 0))
t.dist = 0.0
예제 #21
0
파일: ete_ncbicomp.py 프로젝트: tarah28/ete
def ncbi_consensus(self, ):
    nsubtrees, ndups, subtrees = self.get_speciation_trees(
        map_features=["taxid"])

    valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(
        t, subtrees, show_tree=SHOW_TREE)

    avg_rf = []
    rf_max = 0.0  # reft.robinson_foulds(reft)[1]
    sum_size = 0.0

    #reftree =

    for tn, subt in enumerate(subtrees):
        partial_rf = subt.robinson_foulds(reft, attr_t1="taxid")

        sptree_size = len(set([n.taxid for n in subt.iter_leaves()]))
        sum_size += sptree_size
        avg_rf.append((partial_rf[0] / float(partial_rf[1])) * sptree_size)
        common_names = len(partial_rf[3])
        max_size = max(max_size, sptree_size)
        rf_max = max(rf_max, partial_rf[1])

        rf = numpy.sum(avg_rf) / float(sum_size)  # Treeko dist
        rf_std = numpy.std(avg_rf)
        rf_med = numpy.median(avg_rf)

        sizes_info = "%0.1f/%0.1f +- %0.1f" % (numpy.mean(broken_sizes),
                                               numpy.median(broken_sizes),
                                               numpy.std(broken_sizes))
        iter_values = [
            os.path.basename(tfile), nsubtrees, ndups, broken_subtrees,
            ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std,
            rf_max, common_names
        ]
        print >> OUT, '|'.join(
            map(lambda x: str(x).strip().ljust(15), iter_values))
        fixed = sorted([n for n in prev_broken if n not in broken_clades])
        new_problems = sorted(broken_clades - prev_broken)
        fixed_string = color(', '.join(fixed), "green") if fixed else ""
        problems_string = color(', '.join(new_problems),
                                "red") if new_problems else ""
        OUT.write("    Fixed clades: %s\n" % fixed_string) if fixed else None
        OUT.write("    New broken:   %s\n" %
                  problems_string) if new_problems else None
        prev_broken = broken_clades
        ENTRIES.append([
            os.path.basename(tfile), nsubtrees, ndups, broken_subtrees,
            ncbi_mistakes, broken_branches, sizes_info, fixed_string,
            problems_string
        ])
        OUT.flush()
        if args.show_tree or args.render:
            ts = TreeStyle()
            ts.force_topology = True
            #ts.tree_width = 500
            ts.show_leaf_name = False
            ts.layout_fn = ncbi_layout
            ts.mode = "r"
            t.dist = 0
            if args.show_tree:
                #if args.hide_monophyletic:
                #    tax2monophyletic = {}
                #    n2content = t.get_node2content()
                #    for node in t.traverse():
                #        term2count = defaultdict(int)
                #        for leaf in n2content[node]:
                #            if leaf.lineage:
                #                for term in leaf.lineage:
                #                    term2count[term] += 1
                #        expected_size = len(n2content)
                #        for term, count in term2count.iteritems():
                #            if count > 1

                print "Showing tree..."
                t.show(tree_style=ts)
            else:
                t.render("img.svg", tree_style=ts, dpi=300)
            print "dumping color config"
            cPickle.dump(name2color, open("ncbi_colors.pkl", "w"))

        if args.dump:
            cPickle.dump(t, open("ncbi_analysis.pkl", "w"))