def get_example_tree(): # Random tree t = Tree() t.populate(20, random_branches=True) # Some random features in all nodes for n in t.traverse(): n.add_features(weight=random.randint(0, 50)) # Create an empty TreeStyle ts = TreeStyle() # Set our custom layout function ts.layout_fn = layout # Draw a tree ts.mode = "c" # We will add node names manually ts.show_leaf_name = False # Show branch data ts.show_branch_length = True ts.show_branch_support = True return t, ts
def get_example_tree(): # Set dashed blue lines in all leaves nst1 = NodeStyle() nst1["bgcolor"] = "LightSteelBlue" nst2 = NodeStyle() nst2["bgcolor"] = "Moccasin" nst3 = NodeStyle() nst3["bgcolor"] = "DarkSeaGreen" nst4 = NodeStyle() nst4["bgcolor"] = "Khaki" t = Tree("((((a1,a2),a3), ((b1,b2),(b3,b4))), ((c1,c2),c3));") for n in t.traverse(): n.dist = 0 n1 = t.get_common_ancestor("a1", "a2", "a3") n1.set_style(nst1) n2 = t.get_common_ancestor("b1", "b2", "b3", "b4") n2.set_style(nst2) n3 = t.get_common_ancestor("c1", "c2", "c3") n3.set_style(nst3) n4 = t.get_common_ancestor("b3", "b4") n4.set_style(nst4) ts = TreeStyle() ts.layout_fn = layout ts.show_leaf_name = False ts.mode = "c" ts.root_opening_factor = 1 return t, ts
def get_example_tree(): t = Tree() ts = TreeStyle() ts.layout_fn = layout ts.mode = "r" ts.show_leaf_name = False t.populate(10) return t, ts
def get_example_tree(): t = Tree() ts = TreeStyle() ts.layout_fn = layout ts.mode = "c" ts.show_leaf_name = True ts.min_leaf_separation = 15 t.populate(100) return t, ts
def render_tree(tree, fname): # Generates tree snapshot npr_nodestyle = NodeStyle() npr_nodestyle["fgcolor"] = "red" for n in tree.traverse(): if hasattr(n, "nodeid"): n.set_style(npr_nodestyle) ts = TreeStyle() ts.show_leaf_name = True ts.show_branch_length = True ts.show_branch_support = True ts.mode = "r" iterface = faces.TextFace("iter") ts.legend.add_face(iterface, 0) tree.dist = 0 tree.sort_descendants() tree.render(fname, tree_style=ts, w=700)
t.add_face(fixed, column=1, position="branch-right") # Bind the precomputed style to the root node # ETE 2.1 has now support for general image properties I = TreeStyle() # You can add faces to the tree image (without any node # associated). They will be used as headers and foot notes of the # aligned columns (aligned faces) I.aligned_header.add_face(t1, column = 0) I.aligned_header.add_face(t1, 1) I.aligned_header.add_face(t1, 2) I.aligned_header.add_face(t1, 3) t1.hz_align = 1 # 0 left, 1 center, 2 right t1.border.width = 1 I.aligned_foot.add_face(t2, column = 0) I.aligned_foot.add_face(t2, 1) I.aligned_foot.add_face(t2, 2) I.aligned_foot.add_face(t2, 3) t2.hz_align = 1 # Set tree image style. Note that aligned header and foot is only # visible in "rect" mode. I.mode = "r" #(rectangular) I.tree_width= 50 t.show(mylayout, tree_style=I)
t, ts = Tree(), TreeStyle() t.populate(5) for n in t.traverse(): n.dist = 0 temp_tface = TreeFace(t, ts) n = main_tree.add_child() n.add_face(temp_tface, 0, "aligned") ts.optimal_scale_level = "full" temp_tface = TreeFace(t, ts) n = main_tree.add_child() n.add_face(temp_tface, 0, "aligned") ts = TreeStyle() t.populate(5) ts.mode = "c" temp_tface = TreeFace(t, ts) n = main_tree.add_child() n.add_face(temp_tface, 0, "aligned") ts.optimal_scale_level = "full" temp_tface = TreeFace(t, ts) n = main_tree.add_child() n.add_face(temp_tface, 0, "aligned") t, ts = Tree(), TreeStyle() temp_tface = TreeFace(Tree(), ts) n = main_tree.add_child() n.add_face(temp_tface, 0, "aligned") t, ts = Tree(), TreeStyle()
def ncbi_consensus(self, ): nsubtrees, ndups, subtrees = self.get_speciation_trees(map_features=["taxid"]) valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(t, subtrees, show_tree=SHOW_TREE) avg_rf = [] rf_max = 0.0 # reft.robinson_foulds(reft)[1] sum_size = 0.0 #reftree = for tn, subt in enumerate(subtrees): partial_rf = subt.robinson_foulds(reft, attr_t1="taxid") sptree_size = len(set([n.taxid for n in subt.iter_leaves()])) sum_size += sptree_size avg_rf.append((partial_rf[0]/float(partial_rf[1])) * sptree_size) common_names = len(partial_rf[3]) max_size = max(max_size, sptree_size) rf_max = max(rf_max, partial_rf[1]) rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist rf_std = numpy.std(avg_rf) rf_med = numpy.median(avg_rf) sizes_info = "%0.1f/%0.1f +- %0.1f" %( numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes)) iter_values = [os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std, rf_max, common_names] print >>OUT, '|'.join(map(lambda x: str(x).strip().ljust(15), iter_values)) fixed = sorted([n for n in prev_broken if n not in broken_clades]) new_problems = sorted(broken_clades - prev_broken) fixed_string = color(', '.join(fixed), "green") if fixed else "" problems_string = color(', '.join(new_problems), "red") if new_problems else "" OUT.write(" Fixed clades: %s\n" %fixed_string) if fixed else None OUT.write(" New broken: %s\n" %problems_string) if new_problems else None prev_broken = broken_clades ENTRIES.append([os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string]) OUT.flush() if args.show_tree or args.render: ts = TreeStyle() ts.force_topology = True #ts.tree_width = 500 ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.dist = 0 if args.show_tree: #if args.hide_monophyletic: # tax2monophyletic = {} # n2content = t.get_node2content() # for node in t.traverse(): # term2count = defaultdict(int) # for leaf in n2content[node]: # if leaf.lineage: # for term in leaf.lineage: # term2count[term] += 1 # expected_size = len(n2content) # for term, count in term2count.iteritems(): # if count > 1 print "Showing tree..." t.show(tree_style=ts) else: t.render("img.svg", tree_style=ts, dpi=300) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) if args.dump: cPickle.dump(t, open("ncbi_analysis.pkl", "w"))
def main(argv): parser = argparse.ArgumentParser( description=__DESCRIPTION__, formatter_class=argparse.RawDescriptionHelpFormatter) # name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo. # action - The basic type of action to be taken when this argument is encountered at the command line. (store, store_const, store_true, store_false, append, append_const, version) # nargs - The number of command-line arguments that should be consumed. (N, ? (one or default), * (all 1 or more), + (more than 1) ) # const - A constant value required by some action and nargs selections. # default - The value produced if the argument is absent from the command line. # type - The type to which the command-line argument should be converted. # choices - A container of the allowable values for the argument. # required - Whether or not the command-line option may be omitted (optionals only). # help - A brief description of what the argument does. # metavar - A name for the argument in usage messages. # dest - The name of the attribute to be added to the object returned by parse_args(). parser.add_argument("--show", dest="show_tree", action="store_true", help="""Display tree after the analysis.""") parser.add_argument("--render", dest="render", action="store_true", help="""Render tree.""") parser.add_argument("--dump", dest="dump", action="store_true", help="""Dump analysis""") parser.add_argument( "--explore", dest="explore", type=str, help="""Reads a previously analyzed tree and visualize it""") input_args = parser.add_mutually_exclusive_group() input_args.required = True input_args.add_argument("-t", "--tree", dest="target_tree", nargs="+", type=str, help="""Tree file in newick format""") input_args.add_argument("-tf", dest="tree_list_file", type=str, help="File with the list of tree files") parser.add_argument("--tax", dest="tax_info", type=str, help="If the taxid attribute is not set in the" " newick file for all leaf nodes, a tab file file" " with the translation of name and taxid can be" " provided with this option.") parser.add_argument( "--sp_delimiter", dest="sp_delimiter", type=str, help= "If taxid is part of the leaf name, delimiter used to split the string" ) parser.add_argument( "--sp_field", dest="sp_field", type=int, default=0, help="field position for taxid after splitting leaf names") parser.add_argument("--ref", dest="ref_tree", type=str, help="Uses ref tree to compute robinson foulds" " distances of the different subtrees") parser.add_argument("--rf-only", dest="rf_only", action="store_true", help="Skip ncbi consensus analysis") parser.add_argument( "--outgroup", dest="outgroup", type=str, nargs="+", help="A list of node names defining the trees outgroup") parser.add_argument("--is_sptree", dest="is_sptree", action="store_true", help="Assumes no duplication nodes in the tree") parser.add_argument("-o", dest="output", type=str, help="Writes result into a file") parser.add_argument("--tax2name", dest="tax2name", type=str, help="") parser.add_argument("--tax2track", dest="tax2track", type=str, help="") parser.add_argument("--dump_tax_info", dest="dump_tax_info", action="store_true", help="") args = parser.parse_args(argv) if args.sp_delimiter: GET_TAXID = lambda x: x.split(args.sp_delimiter)[args.sp_field] else: GET_TAXID = None reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else "" if args.explore: print >> sys.stderr, "Reading tree from file:", args.explore t = cPickle.load(open(args.explore)) ts = TreeStyle() ts.force_topology = True ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.show(tree_style=ts) print >> sys.stderr, "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) sys.exit() if args.output: OUT = open(args.output, "w") else: OUT = sys.stdout print >> sys.stderr, "Dumping results into", OUT target_trees = [] if args.tree_list_file: target_trees = [line.strip() for line in open(args.tree_list_file)] if args.target_tree: target_trees += args.target_tree prev_tree = None if args.tax2name: tax2name = cPickle.load(open(args.tax2name)) else: tax2name = {} if args.tax2track: tax2track = cPickle.load(open(args.tax2track)) else: tax2track = {} print len(tax2track), len(tax2name) header = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Clade sizes", "RF (avg)", "RF (med)", "RF (std)", "RF (max)", "Shared tips") print >> OUT, '|'.join([h.ljust(15) for h in header]) if args.ref_tree: print >> sys.stderr, "Reading ref tree from", args.ref_tree reft = Tree(args.ref_tree, format=1) else: reft = None SHOW_TREE = False if args.show_tree or args.render: SHOW_TREE = True prev_broken = set() ENTRIES = [] ncbi.connect_database() for tfile in target_trees: #print tfile t = PhyloTree(tfile, sp_naming_function=None) if GET_TAXID: for n in t.iter_leaves(): n.name = GET_TAXID(n.name) if args.outgroup: if len(args.outgroup) == 1: out = t & args.outgroup[0] else: out = t.get_common_ancestor(args.outgroup) if set(out.get_leaf_names()) ^ set(args.outgroup): raise ValueError("Outgroup is not monophyletic") t.set_outgroup(out) t.ladderize() if prev_tree: tree_compare(t, prev_tree) prev_tree = t if args.tax_info: tax2name, tax2track = annotate_tree_with_taxa( t, args.tax_info, tax2name, tax2track) if args.dump_tax_info: cPickle.dump(tax2track, open("tax2track.pkl", "w")) cPickle.dump(tax2name, open("tax2name.pkl", "w")) print "Tax info written into pickle files" else: for n in t.iter_leaves(): spcode = n.name n.add_features(taxid=spcode) n.add_features(species=spcode) tax2name, tax2track = annotate_tree_with_taxa( t, None, tax2name, tax2track) # Split tree into species trees #subtrees = t.get_speciation_trees() if not args.rf_only: #print "Calculating tree subparts..." t1 = time.time() if not args.is_sptree: subtrees = t.split_by_dups() #print "Subparts:", len(subtrees), time.time()-t1 else: subtrees = [t] valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees( t, subtrees, show_tree=SHOW_TREE) #print valid_subtrees, broken_subtrees, ncbi_mistakes, total_rf else: subtrees = [] valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = 0, 0, 0, 0, 0, 0 ndups = 0 nsubtrees = len(subtrees) rf = 0 rf_max = 0 rf_std = 0 rf_med = 0 common_names = 0 max_size = 0 if reft and len(subtrees) == 1: rf = t.robinson_foulds(reft, attr_t1="realname") rf_max = rf[1] rf = rf[0] rf_med = rf elif reft: #print "Calculating avg RF..." nsubtrees, ndups, subtrees = t.get_speciation_trees( map_features=["taxid"]) #print len(subtrees), "Sub-Species-trees found" avg_rf = [] rf_max = 0.0 # reft.robinson_foulds(reft)[1] sum_size = 0.0 print nsubtrees, "subtrees", ndups, "duplications" for ii, subt in enumerate(subtrees): print "\r%d" % ii, sys.stdout.flush() try: partial_rf = subt.robinson_foulds(reft, attr_t1="taxid") except ValueError: pass else: sptree_size = len( set([n.taxid for n in subt.iter_leaves()])) sum_size += sptree_size avg_rf.append( (partial_rf[0] / float(partial_rf[1])) * sptree_size) common_names = len(partial_rf[3]) max_size = max(max_size, sptree_size) rf_max = max(rf_max, partial_rf[1]) #print partial_rf[:2] rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist rf_std = numpy.std(avg_rf) rf_med = numpy.median(avg_rf) sizes_info = "%0.1f/%0.1f +- %0.1f" % (numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes)) iter_values = [ os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std, rf_max, common_names ] print >> OUT, '|'.join( map(lambda x: str(x).strip().ljust(15), iter_values)) fixed = sorted([n for n in prev_broken if n not in broken_clades]) new_problems = sorted(broken_clades - prev_broken) fixed_string = color(', '.join(fixed), "green") if fixed else "" problems_string = color(', '.join(new_problems), "red") if new_problems else "" OUT.write(" Fixed clades: %s\n" % fixed_string) if fixed else None OUT.write(" New broken: %s\n" % problems_string) if new_problems else None prev_broken = broken_clades ENTRIES.append([ os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string ]) OUT.flush() if args.show_tree or args.render: ts = TreeStyle() ts.force_topology = True #ts.tree_width = 500 ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.dist = 0 if args.show_tree: #if args.hide_monophyletic: # tax2monophyletic = {} # n2content = t.get_node2content() # for node in t.traverse(): # term2count = defaultdict(int) # for leaf in n2content[node]: # if leaf.lineage: # for term in leaf.lineage: # term2count[term] += 1 # expected_size = len(n2content) # for term, count in term2count.iteritems(): # if count > 1 print "Showing tree..." t.show(tree_style=ts) else: t.render("img.svg", tree_style=ts, dpi=300) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) if args.dump: cPickle.dump(t, open("ncbi_analysis.pkl", "w")) print print HEADER = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Broken branches", "Clade sizes", "Fixed Groups", "New Broken Clades") print_table(ENTRIES, max_col_width=50, row_line=True, header=HEADER) if args.output: OUT.close()
def get_example_tree(): t = Tree() t.populate(10) # Margins, alignment, border, background and opacity can now be set for any face rs1 = faces.TextFace("branch-right\nmargins&borders", fsize=12, fgcolor="#009000") rs1.margin_top = 10 rs1.margin_bottom = 50 rs1.margin_left = 40 rs1.margin_right = 40 rs1.border.width = 1 rs1.background.color = "lightgreen" rs1.inner_border.width = 0 rs1.inner_border.line_style = 1 rs1.inner_border.color = "red" rs1.opacity = 0.6 rs1.hz_align = 2 # 0 left, 1 center, 2 right rs1.vt_align = 1 # 0 left, 1 center, 2 right br1 = faces.TextFace("branch-right1", fsize=12, fgcolor="#009000") br2 = faces.TextFace("branch-right3", fsize=12, fgcolor="#009000") # New face positions (branch-top and branch-bottom) bb = faces.TextFace("branch-bottom 1", fsize=8, fgcolor="#909000") bb2 = faces.TextFace("branch-bottom 2", fsize=8, fgcolor="#909000") bt = faces.TextFace("branch-top 1", fsize=6, fgcolor="#099000") # And faces can also be used as headers or foot notes of aligned # columns t1 = faces.TextFace("Header Face", fsize=12, fgcolor="#aa0000") t2 = faces.TextFace("Footer Face", fsize=12, fgcolor="#0000aa") # Attribute faces can now contain prefix and suffix fixed text aligned = faces.AttrFace("name", fsize=12, fgcolor="RoyalBlue", text_prefix="Aligned (", text_suffix=")") # horizontal and vertical alignment per face aligned.hz_align = 1 # 0 left, 1 center, 2 right aligned.vt_align = 1 # Node style handling is no longer limited to layout functions. You # can now create fixed node styles and use them many times, save them # or even add them to nodes before drawing (this allows to save and # reproduce an tree image design) style = NodeStyle() style["fgcolor"] = "Gold" style["shape"] = "square" style["size"] = 15 style["vt_line_color"] = "#ff0000" t.set_style(style) # add a face to the style. This face will be render in any node # associated to the style. fixed = faces.TextFace("FIXED branch-right", fsize=11, fgcolor="blue") t.add_face(fixed, column=1, position="branch-right") # Bind the precomputed style to the root node # ETE 2.1 has now support for general image properties ts = TreeStyle() # You can add faces to the tree image (without any node # associated). They will be used as headers and foot notes of the # aligned columns (aligned faces) ts.aligned_header.add_face(t1, column=0) ts.aligned_header.add_face(t1, 1) ts.aligned_header.add_face(t1, 2) ts.aligned_header.add_face(t1, 3) t1.hz_align = 1 # 0 left, 1 center, 2 right t1.border.width = 1 ts.aligned_foot.add_face(t2, column=0) ts.aligned_foot.add_face(t2, 1) ts.aligned_foot.add_face(t2, 2) ts.aligned_foot.add_face(t2, 3) t2.hz_align = 1 # Set tree image style. Note that aligned header and foot is only # visible in "rect" mode. ts.mode = "r" ts.scale = 10 for node in t.traverse(): # If node is a leaf, add the nodes name and a its scientific # name if node.is_leaf(): node.add_face(aligned, column=0, position="aligned") node.add_face(aligned, column=1, position="aligned") node.add_face(aligned, column=3, position="aligned") else: node.add_face(bt, column=0, position="branch-top") node.add_face(bb, column=0, position="branch-bottom") node.add_face(bb2, column=0, position="branch-bottom") node.add_face(br1, column=0, position="branch-right") node.add_face(rs1, column=0, position="branch-right") node.add_face(br2, column=0, position="branch-right") return t, ts
application.CONFIG["DISPLAY"] = ":0" # This is the most common # configuration # We extend the minimum WebTreeApplication with our own WSGI # application application.set_external_app_handler(example_app) # Lets now apply our custom tree loader function to the main # application application.set_tree_loader(my_tree_loader) # And our layout as the default one to render trees ts = TreeStyle() ts.show_leaf_name = False ts.layout_fn.append(main_layout) ts.mode = "r" ts.branch_vertical_margin = 5 #ts.scale = 20 application.set_tree_style(ts) #application.set_default_layout_fn(main_layout) application.set_tree_size(None, None) # I want to make up how tree image in shown using a custrom tree # renderer that adds much more HTML code application.set_external_tree_renderer(tree_renderer) # ============================================================================== # ADD CUSTOM ACTIONS TO THE APPLICATION # # The function "register_action" allows to attach functionality to # nodes in the image. All registered accions will be shown in the
def get_example_tree(): t = Tree() t.populate(10) # Margins, alignment, border, background and opacity can now be set for any face rs1 = faces.TextFace("branch-right\nmargins&borders", fsize=12, fgcolor="#009000") rs1.margin_top = 10 rs1.margin_bottom = 50 rs1.margin_left = 40 rs1.margin_right = 40 rs1.border.width = 1 rs1.background.color = "lightgreen" rs1.inner_border.width = 0 rs1.inner_border.line_style = 1 rs1.inner_border.color= "red" rs1.opacity = 0.6 rs1.hz_align = 2 # 0 left, 1 center, 2 right rs1.vt_align = 1 # 0 left, 1 center, 2 right br1 = faces.TextFace("branch-right1", fsize=12, fgcolor="#009000") br2 = faces.TextFace("branch-right3", fsize=12, fgcolor="#009000") # New face positions (branch-top and branch-bottom) bb = faces.TextFace("branch-bottom 1", fsize=8, fgcolor="#909000") bb2 = faces.TextFace("branch-bottom 2", fsize=8, fgcolor="#909000") bt = faces.TextFace("branch-top 1", fsize=6, fgcolor="#099000") # And faces can also be used as headers or foot notes of aligned # columns t1 = faces.TextFace("Header Face", fsize=12, fgcolor="#aa0000") t2 = faces.TextFace("Footer Face", fsize=12, fgcolor="#0000aa") # Attribute faces can now contain prefix and suffix fixed text aligned = faces.AttrFace("name", fsize=12, fgcolor="RoyalBlue", text_prefix="Aligned (", text_suffix=")") # horizontal and vertical alignment per face aligned.hz_align = 1 # 0 left, 1 center, 2 right aligned.vt_align = 1 # Node style handling is no longer limited to layout functions. You # can now create fixed node styles and use them many times, save them # or even add them to nodes before drawing (this allows to save and # reproduce an tree image design) style = NodeStyle() style["fgcolor"] = "Gold" style["shape"] = "square" style["size"] = 15 style["vt_line_color"] = "#ff0000" t.set_style(style) # add a face to the style. This face will be render in any node # associated to the style. fixed = faces.TextFace("FIXED branch-right", fsize=11, fgcolor="blue") t.add_face(fixed, column=1, position="branch-right") # Bind the precomputed style to the root node # ETE 2.1 has now support for general image properties ts = TreeStyle() # You can add faces to the tree image (without any node # associated). They will be used as headers and foot notes of the # aligned columns (aligned faces) ts.aligned_header.add_face(t1, column = 0) ts.aligned_header.add_face(t1, 1) ts.aligned_header.add_face(t1, 2) ts.aligned_header.add_face(t1, 3) t1.hz_align = 1 # 0 left, 1 center, 2 right t1.border.width = 1 ts.aligned_foot.add_face(t2, column = 0) ts.aligned_foot.add_face(t2, 1) ts.aligned_foot.add_face(t2, 2) ts.aligned_foot.add_face(t2, 3) t2.hz_align = 1 # Set tree image style. Note that aligned header and foot is only # visible in "rect" mode. ts.mode = "r" ts.scale = 10 for node in t.traverse(): # If node is a leaf, add the nodes name and a its scientific # name if node.is_leaf(): node.add_face(aligned, column=0, position="aligned") node.add_face(aligned, column=1, position="aligned") node.add_face(aligned, column=3, position="aligned") else: node.add_face(bt, column=0, position="branch-top") node.add_face(bb, column=0, position="branch-bottom") node.add_face(bb2, column=0, position="branch-bottom") node.add_face(br1, column=0, position="branch-right") node.add_face(rs1, column=0, position="branch-right") node.add_face(br2, column=0, position="branch-right") return t, ts
def main(argv): parser = argparse.ArgumentParser(description=__DESCRIPTION__, formatter_class=argparse.RawDescriptionHelpFormatter) # name or flags - Either a name or a list of option strings, e.g. foo or -f, --foo. # action - The basic type of action to be taken when this argument is encountered at the command line. (store, store_const, store_true, store_false, append, append_const, version) # nargs - The number of command-line arguments that should be consumed. (N, ? (one or default), * (all 1 or more), + (more than 1) ) # const - A constant value required by some action and nargs selections. # default - The value produced if the argument is absent from the command line. # type - The type to which the command-line argument should be converted. # choices - A container of the allowable values for the argument. # required - Whether or not the command-line option may be omitted (optionals only). # help - A brief description of what the argument does. # metavar - A name for the argument in usage messages. # dest - The name of the attribute to be added to the object returned by parse_args(). parser.add_argument("--show", dest="show_tree", action="store_true", help="""Display tree after the analysis.""") parser.add_argument("--render", dest="render", action="store_true", help="""Render tree.""") parser.add_argument("--dump", dest="dump", action="store_true", help="""Dump analysis""") parser.add_argument("--explore", dest="explore", type=str, help="""Reads a previously analyzed tree and visualize it""") input_args = parser.add_mutually_exclusive_group() input_args.required=True input_args.add_argument("-t", "--tree", dest="target_tree", nargs="+", type=str, help="""Tree file in newick format""") input_args.add_argument("-tf", dest="tree_list_file", type=str, help="File with the list of tree files") parser.add_argument("--tax", dest="tax_info", type=str, help="If the taxid attribute is not set in the" " newick file for all leaf nodes, a tab file file" " with the translation of name and taxid can be" " provided with this option.") parser.add_argument("--sp_delimiter", dest="sp_delimiter", type=str, help="If taxid is part of the leaf name, delimiter used to split the string") parser.add_argument("--sp_field", dest="sp_field", type=int, default=0, help="field position for taxid after splitting leaf names") parser.add_argument("--ref", dest="ref_tree", type=str, help="Uses ref tree to compute robinson foulds" " distances of the different subtrees") parser.add_argument("--rf-only", dest="rf_only", action = "store_true", help="Skip ncbi consensus analysis") parser.add_argument("--outgroup", dest="outgroup", type=str, nargs="+", help="A list of node names defining the trees outgroup") parser.add_argument("--is_sptree", dest="is_sptree", action = "store_true", help="Assumes no duplication nodes in the tree") parser.add_argument("-o", dest="output", type=str, help="Writes result into a file") parser.add_argument("--tax2name", dest="tax2name", type=str, help="") parser.add_argument("--tax2track", dest="tax2track", type=str, help="") parser.add_argument("--dump_tax_info", dest="dump_tax_info", action="store_true", help="") args = parser.parse_args(argv) if args.sp_delimiter: GET_TAXID = lambda x: x.split(args.sp_delimiter)[args.sp_field] else: GET_TAXID = None reftree_name = os.path.basename(args.ref_tree) if args.ref_tree else "" if args.explore: print >>sys.stderr, "Reading tree from file:", args.explore t = cPickle.load(open(args.explore)) ts = TreeStyle() ts.force_topology = True ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.show(tree_style=ts) print >>sys.stderr, "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) sys.exit() if args.output: OUT = open(args.output, "w") else: OUT = sys.stdout print >>sys.stderr, "Dumping results into", OUT target_trees = [] if args.tree_list_file: target_trees = [line.strip() for line in open(args.tree_list_file)] if args.target_tree: target_trees += args.target_tree prev_tree = None if args.tax2name: tax2name = cPickle.load(open(args.tax2name)) else: tax2name = {} if args.tax2track: tax2track = cPickle.load(open(args.tax2track)) else: tax2track = {} print len(tax2track), len(tax2name) header = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Clade sizes", "RF (avg)", "RF (med)", "RF (std)", "RF (max)", "Shared tips") print >>OUT, '|'.join([h.ljust(15) for h in header]) if args.ref_tree: print >>sys.stderr, "Reading ref tree from", args.ref_tree reft = Tree(args.ref_tree, format=1) else: reft = None SHOW_TREE = False if args.show_tree or args.render: SHOW_TREE = True prev_broken = set() ENTRIES = [] ncbi.connect_database() for tfile in target_trees: #print tfile t = PhyloTree(tfile, sp_naming_function=None) if GET_TAXID: for n in t.iter_leaves(): n.name = GET_TAXID(n.name) if args.outgroup: if len(args.outgroup) == 1: out = t & args.outgroup[0] else: out = t.get_common_ancestor(args.outgroup) if set(out.get_leaf_names()) ^ set(args.outgroup): raise ValueError("Outgroup is not monophyletic") t.set_outgroup(out) t.ladderize() if prev_tree: tree_compare(t, prev_tree) prev_tree = t if args.tax_info: tax2name, tax2track = annotate_tree_with_taxa(t, args.tax_info, tax2name, tax2track) if args.dump_tax_info: cPickle.dump(tax2track, open("tax2track.pkl", "w")) cPickle.dump(tax2name, open("tax2name.pkl", "w")) print "Tax info written into pickle files" else: for n in t.iter_leaves(): spcode = n.name n.add_features(taxid=spcode) n.add_features(species=spcode) tax2name, tax2track = annotate_tree_with_taxa(t, None, tax2name, tax2track) # Split tree into species trees #subtrees = t.get_speciation_trees() if not args.rf_only: #print "Calculating tree subparts..." t1 = time.time() if not args.is_sptree: subtrees = t.split_by_dups() #print "Subparts:", len(subtrees), time.time()-t1 else: subtrees = [t] valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees(t, subtrees, show_tree=SHOW_TREE) #print valid_subtrees, broken_subtrees, ncbi_mistakes, total_rf else: subtrees = [] valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = 0, 0, 0, 0, 0, 0 ndups = 0 nsubtrees = len(subtrees) rf = 0 rf_max = 0 rf_std = 0 rf_med = 0 common_names = 0 max_size = 0 if reft and len(subtrees) == 1: rf = t.robinson_foulds(reft, attr_t1="realname") rf_max = rf[1] rf = rf[0] rf_med = rf elif reft: #print "Calculating avg RF..." nsubtrees, ndups, subtrees = t.get_speciation_trees(map_features=["taxid"]) #print len(subtrees), "Sub-Species-trees found" avg_rf = [] rf_max = 0.0 # reft.robinson_foulds(reft)[1] sum_size = 0.0 print nsubtrees, "subtrees", ndups, "duplications" for ii, subt in enumerate(subtrees): print "\r%d" %ii, sys.stdout.flush() try: partial_rf = subt.robinson_foulds(reft, attr_t1="taxid") except ValueError: pass else: sptree_size = len(set([n.taxid for n in subt.iter_leaves()])) sum_size += sptree_size avg_rf.append((partial_rf[0]/float(partial_rf[1])) * sptree_size) common_names = len(partial_rf[3]) max_size = max(max_size, sptree_size) rf_max = max(rf_max, partial_rf[1]) #print partial_rf[:2] rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist rf_std = numpy.std(avg_rf) rf_med = numpy.median(avg_rf) sizes_info = "%0.1f/%0.1f +- %0.1f" %( numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes)) iter_values = [os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std, rf_max, common_names] print >>OUT, '|'.join(map(lambda x: str(x).strip().ljust(15), iter_values)) fixed = sorted([n for n in prev_broken if n not in broken_clades]) new_problems = sorted(broken_clades - prev_broken) fixed_string = color(', '.join(fixed), "green") if fixed else "" problems_string = color(', '.join(new_problems), "red") if new_problems else "" OUT.write(" Fixed clades: %s\n" %fixed_string) if fixed else None OUT.write(" New broken: %s\n" %problems_string) if new_problems else None prev_broken = broken_clades ENTRIES.append([os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string]) OUT.flush() if args.show_tree or args.render: ts = TreeStyle() ts.force_topology = True #ts.tree_width = 500 ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.dist = 0 if args.show_tree: #if args.hide_monophyletic: # tax2monophyletic = {} # n2content = t.get_node2content() # for node in t.traverse(): # term2count = defaultdict(int) # for leaf in n2content[node]: # if leaf.lineage: # for term in leaf.lineage: # term2count[term] += 1 # expected_size = len(n2content) # for term, count in term2count.iteritems(): # if count > 1 print "Showing tree..." t.show(tree_style=ts) else: t.render("img.svg", tree_style=ts, dpi=300) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) if args.dump: cPickle.dump(t, open("ncbi_analysis.pkl", "w")) print print HEADER = ("TargetTree", "Subtrees", "Ndups", "Broken subtrees", "Broken clades", "Broken branches", "Clade sizes", "Fixed Groups", "New Broken Clades") print_table(ENTRIES, max_col_width = 50, row_line=True, header=HEADER) if args.output: OUT.close()
application.CONFIG["DISPLAY"] = ":0" # This is the most common # configuration # We extend the minimum WebTreeApplication with our own WSGI # application application.set_external_app_handler(example_app) # Lets now apply our custom tree loader function to the main # application application.set_tree_loader(my_tree_loader) # And our layout as the default one to render trees ts = TreeStyle() ts.show_leaf_name = False ts.layout_fn.append(main_layout) ts.mode = "r" ts.branch_vertical_margin = 5 #ts.scale = 20 application.set_tree_style(ts) #application.set_default_layout_fn(main_layout) application.set_tree_size(None, None) # I want to make up how tree image in shown using a custrom tree # renderer that adds much more HTML code application.set_external_tree_renderer(tree_renderer) # ============================================================================== # ADD CUSTOM ACTIONS TO THE APPLICATION # # The function "register_action" allows to attach functionality to # nodes in the image. All registered accions will be shown in the # popup menu bound to the nodes and faces in the web image.
T.opacity = 0.8 # And place as a float face over the tree faces.add_face_to_node(T, node, 1, position="aligned") # Random tree t = Tree() t.populate(20, random_branches=True) # Some random features in all nodes for n in t.traverse(): n.add_features(weight=random.randint(0, 50)) # Create an empty TreeStyle ts = TreeStyle() # Set our custom layout function ts.layout_fn = layout # Draw a tree ts.mode = "c" # We will add node names manually ts.show_leaf_name = False # Show branch data ts.show_branch_length = True ts.show_branch_support = True t.render("tree_faces.png", w=600, dpi=300, tree_style=ts) t.show(tree_style=ts)
if node.is_leaf(): #node.img_style["size"] = random.randint(50, 50) f = faces.TextFace("alignedFace", fsize=8, fgcolor="blue") #f = faces.AttrFace("name", fsize=random.randint(20,20)) faces.add_face_to_node(f, node, 0, position="aligned") f.border.width = 0 #f = faces.CircleFace(20, "red") #f = faces.AttrFace("name", fsize=20) f = faces.TextFace("NAME", fsize=10) #faces.add_face_to_node(f, node, 0, position="branch-right") f.border.width = 0 #node.img_style["bgcolor"] = random_color() #Tree().show() ts = TreeStyle() ts.mode = "c" ts.layout_fn = layout ts.show_leaf_name = False ts.arc_span = 340 ts.arc_start = -70 #ts.allow_face_overlap = True #ts.show_branch_length = True ts.draw_guiding_lines = False ts.optimal_scale_level = "mid" ts.extra_branch_line_color = "red" ts.root_opening_factor = 0.50 ts.show_border = True ts.scale = None t = Tree() t.populate(200, random_branches=True, branch_range=(0, 0)) t.dist = 0.0
def ncbi_consensus(self, ): nsubtrees, ndups, subtrees = self.get_speciation_trees( map_features=["taxid"]) valid_subtrees, broken_subtrees, ncbi_mistakes, broken_branches, total_rf, broken_clades, broken_sizes = analyze_subtrees( t, subtrees, show_tree=SHOW_TREE) avg_rf = [] rf_max = 0.0 # reft.robinson_foulds(reft)[1] sum_size = 0.0 #reftree = for tn, subt in enumerate(subtrees): partial_rf = subt.robinson_foulds(reft, attr_t1="taxid") sptree_size = len(set([n.taxid for n in subt.iter_leaves()])) sum_size += sptree_size avg_rf.append((partial_rf[0] / float(partial_rf[1])) * sptree_size) common_names = len(partial_rf[3]) max_size = max(max_size, sptree_size) rf_max = max(rf_max, partial_rf[1]) rf = numpy.sum(avg_rf) / float(sum_size) # Treeko dist rf_std = numpy.std(avg_rf) rf_med = numpy.median(avg_rf) sizes_info = "%0.1f/%0.1f +- %0.1f" % (numpy.mean(broken_sizes), numpy.median(broken_sizes), numpy.std(broken_sizes)) iter_values = [ os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, rf, rf_med, rf_std, rf_max, common_names ] print >> OUT, '|'.join( map(lambda x: str(x).strip().ljust(15), iter_values)) fixed = sorted([n for n in prev_broken if n not in broken_clades]) new_problems = sorted(broken_clades - prev_broken) fixed_string = color(', '.join(fixed), "green") if fixed else "" problems_string = color(', '.join(new_problems), "red") if new_problems else "" OUT.write(" Fixed clades: %s\n" % fixed_string) if fixed else None OUT.write(" New broken: %s\n" % problems_string) if new_problems else None prev_broken = broken_clades ENTRIES.append([ os.path.basename(tfile), nsubtrees, ndups, broken_subtrees, ncbi_mistakes, broken_branches, sizes_info, fixed_string, problems_string ]) OUT.flush() if args.show_tree or args.render: ts = TreeStyle() ts.force_topology = True #ts.tree_width = 500 ts.show_leaf_name = False ts.layout_fn = ncbi_layout ts.mode = "r" t.dist = 0 if args.show_tree: #if args.hide_monophyletic: # tax2monophyletic = {} # n2content = t.get_node2content() # for node in t.traverse(): # term2count = defaultdict(int) # for leaf in n2content[node]: # if leaf.lineage: # for term in leaf.lineage: # term2count[term] += 1 # expected_size = len(n2content) # for term, count in term2count.iteritems(): # if count > 1 print "Showing tree..." t.show(tree_style=ts) else: t.render("img.svg", tree_style=ts, dpi=300) print "dumping color config" cPickle.dump(name2color, open("ncbi_colors.pkl", "w")) if args.dump: cPickle.dump(t, open("ncbi_analysis.pkl", "w"))