from pygame.locals import * from euclidMath import Math pygame.init() screen = pygame.display.set_mode((800, 800)) Math = Math() # To place at a given point a straight line euqal to a given straight line. a = (300, 420) b = (420, 420) c = (269, 242) distAB = Math.distance(a[0], a[1], b[0], b[1]) distBC = Math.distance(c[0], c[1], b[0], b[1]) d = (Math.avg(a[0], b[0]), a[1] - Math.pythagac(distAB / 2, distAB)) distDB = Math.distance(d[0], d[1], b[0], b[1]) # Fill screen with white. screen.fill((255, 255, 255)) # Let A be the given point, and BC the given straight line. pygame.draw.circle(screen, (0, 0, 0), a, 2) pygame.draw.line(screen, (0, 0, 0), b, c, 2) # Thus it is required to place at the point A a straight line equal to the given straight line BC. # From the point A to the point B let the straight line AB be joined; and on it let the equilateral triangle DAB be constructed. pygame.draw.line(screen, (0, 0, 0), a, b, 1)
screen = pygame.display.set_mode((600, 600)) Math = Math() # To draw a straight line at right angles to a given sdtraight line from a given point on it. a = (0, 400) b = (600, 400) c = (300, 400) d = (100, 400) e = (500, 400) dist = Math.distance(d[0], d[1], e[0], e[1]) f = (Math.avg(d[0], e[0]), d[1] - Math.pythagac(dist / 2, dist)) # Fill the screen with white. screen.fill((255, 255, 255)) # Let AB be the given straight line, and C the given point on it. pygame.draw.line(screen, (0, 0, 0), a, b, 2) # Let a point D be taken at random on AC; let Ce be made equal to CD; on DE let the equilater triangle FDE be constructed, and let FC be joined. pygame.draw.circle(screen, (0, 0, 0), c, Math.distance(d[0], 0, c[0], 0), 1) pygame.draw.line(screen, (0, 0, 0), d, f, 2) pygame.draw.line(screen, (0, 0, 0), e, f, 2)
screen.fill((255, 255, 255)) #"Infinate line" pygame.draw.line(screen, (0, 0, 0), (-1, 400), (601, 400), 2) #key points d = (453, 563) c = (300, 350) distCD = Math.distance(d[0], d[1], c[0], c[1]) h = (c[0], 400) distCH = h[1] - c[1] distCE = Math.pythagac(distCH, distCD) e = (c[0] + distCE, 400) g = (c[0] - distCE, 400) #circle, and perpendicular line pygame.draw.circle(screen, (0, 0, 0), c, distCD, 2) pygame.draw.line(screen, (0, 0, 0), c, (c[0], 400), 2) #lines going from C to the point where the circle touches the the line pygame.draw.line(screen, (0, 0, 0), c, e, 2) pygame.draw.line(screen, (0, 0, 0), c, g, 2) pygame.display.flip()
screen = pygame.display.set_mode((600, 600)) Math = Math() # On a given finite straight line to construct an equilateral triangle. a = (200, 400) b = (400, 400) dist = Math.distance(a[0], a[1], b[0], b[1]) # Fill screen with white screen.fill((255, 255, 255)) # Let AB be the given finite straight line. pygame.draw.line(screen, (0, 0, 0), a, b, 2) # With centre A and sistance AB let the circle BCD be described. pygame.draw.circle(screen, (0, 0, 0), a, dist, 1) # With center B and distance BA let the circle ACE be described. pygame.draw.circle(screen, (0, 0, 0), b, dist, 1) # From the point C, in which the circles cut one another, to the points A, B let the straight lines CA, CB be joined. pygame.draw.line(screen, (0, 0, 0), a, (Math.avg(a[0], b[0]), a[1] - Math.pythagac(dist/2, dist)), 2) pygame.draw.line(screen, (0, 0, 0), b, (Math.avg(a[0], b[0]), a[1] - Math.pythagac(dist/2, dist)), 2) pygame.display.flip() input()
from euclidMath import Math pygame.init() screen = pygame.display.set_mode((1000 ,1000)) Math = Math() # To bisect a given rectilineal angle a = (400, 200) b = (678, 449) c = (a[0]-b[0]+a[0], 449) distBC = Math.distance(c[0], c[1], b[0], b[1]) sqrtisgay = Math.pythagac(distBC/2, distBC) d = (a[0], sqrtisgay + b[1]) # screen fill screen.fill((255, 255, 255)) # Triangle cunstruction pygame.draw.line(screen, (0, 0, 0), a, b, 2) pygame.draw.line(screen, (0, 0, 0), c, b, 2) pygame.draw.line(screen, (0, 0, 0), a, c, 2) # prop 2 on line bc
dist = Math.distance(a[0], a[1], b[0], b[1]) # Fill screen with white screen.fill((255, 255, 255)) # Let AB be the given finite straight line. pygame.draw.line(screen, (0, 0, 0), a, b, 2) # With centre A and sistance AB let the circle BCD be described. pygame.draw.circle(screen, (0, 0, 0), a, dist, 1) # With center B and distance BA let the circle ACE be described. pygame.draw.circle(screen, (0, 0, 0), b, dist, 1) # From the point C, in which the circles cut one another, to the points A, B let the straight lines CA, CB be joined. pygame.draw.line(screen, (0, 0, 0), a, (Math.avg(a[0], b[0]), a[1] - Math.pythagac(dist / 2, dist)), 2) pygame.draw.line(screen, (0, 0, 0), b, (Math.avg(a[0], b[0]), a[1] - Math.pythagac(dist / 2, dist)), 2) # Bisecting the straight line. pygame.draw.line(screen, (0, 0, 0), (Math.avg(a[0], b[0]), a[1]), (Math.avg(a[0], b[0]), a[1] - Math.pythagac(dist / 2, dist)), 2) pygame.display.flip() input()