예제 #1
0
    def __init__(self,
                 storage_climatology,
                 storage_large_scale,
                 storage_local,
                 covariates_descriptor,
                 insitu_biases=False,
                 breakpoints_file=None,
                 global_biases=False,
                 global_biases_group_list=[],
                 compute_uncertainties=False,
                 method='EXACT',
                 compute_sample=False,
                 sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3],
                 compute_prior_sample=False):

        super(AnalysisSystem_EUSTACE,
              self).__init__(components=[
                  SpaceTimeComponent(
                      ClimatologyDefinition(covariates_descriptor),
                      storage_climatology, True, compute_uncertainties, method,
                      compute_sample, sample_size, compute_prior_sample),
                  SpaceTimeComponent(
                      LargeScaleDefinition(insitu_biases, breakpoints_file),
                      storage_large_scale, True, compute_uncertainties, method,
                      compute_sample, sample_size, compute_prior_sample),
                  SpatialComponent(
                      LocalDefinition(global_biases, global_biases_group_list),
                      storage_local, compute_uncertainties, method,
                      compute_sample, sample_size, compute_prior_sample)
              ],
                             observable=ObservationSource.TMEAN)
예제 #2
0
def run_prior_solve():

    componentstorage = TestComponentDefinition()    
    solutionstorage = SpaceTimeComponentSolutionStorage_InMemory()
    printstats=True
    compute_uncertainties = False
    method='EXACT'
    compute_sample=False
    sample_size=1
    compute_prior_sample=True
    
    component = SpaceTimeComponent(componentstorage, solutionstorage, printstats, compute_uncertainties, method, compute_sample, sample_size, compute_prior_sample)  
    component_solution = component.component_solution()
    component_solution.update()
예제 #3
0
    def test_process_observations_compute_sample(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 5.0  0.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [ 0.0  5.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  13.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   80.65 ]     [ 154.0 ]
        #
        # => x = [ -0.60697861 ]
        #        [  1.78530506 ]
        #

        number_of_samples = 200
        c = SpaceTimeComponent(ComponentStorage_InMemory(
            TestSpaceTimeComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                               SpaceTimeComponentSolutionStorage_InMemory(),
                               compute_sample=True,
                               sample_size=number_of_samples)
        s = c.component_solution()
        self.assertIsInstance(s, SpaceTimeComponentSolution)
        self.assertTrue(s.compute_sample)
        test_offset = numpy.array([2.0, 3.0])
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=21),
            test_offset[0:1])
        s.update_time_step()
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=532),
            test_offset[1:2])
        s.update_time_step()
        numpy.random.seed(0)
        s.update()
        # In this case we are considering the last iteration of model solving, hence sample should have been stored
        computed_sample = s.solutionstorage.state_sample
        self.assertEqual((2, number_of_samples), computed_sample.shape)

        numpy.random.seed(0)
        variate = scipy.random.normal(0.0, 1.0, (2, number_of_samples))
        expected_posterior_precision = numpy.array([[13.25, -16.5],
                                                    [-16.5, 80.65]])
        # check result
        numpy.testing.assert_almost_equal(
            numpy.dot(variate.T, variate),
            numpy.dot(computed_sample.T,
                      numpy.dot(expected_posterior_precision,
                                computed_sample)))
예제 #4
0
    def __init__(self):

        # Build analysis system by referencing the global variables
        # In distributed computing we would construct these using classes that load from file

        super(AnalysisSystem_HadCRUT4_InMemory,
              self).__init__(components=[
                  SpaceTimeComponent(HadCRUT4_InMemory.definition_climatology,
                                     HadCRUT4_InMemory.solution_climatology),
                  SpaceTimeComponent(HadCRUT4_InMemory.definition_large_scale,
                                     HadCRUT4_InMemory.solution_large_scale),
                  SpatialComponent(HadCRUT4_InMemory.definition_local,
                                   HadCRUT4_InMemory.solution_local)
              ],
                             observable=ObservationSource.TMEAN)
예제 #5
0
    def __init__(self,
                 storage_climatology,
                 storage_large_scale,
                 storage_local_bias,
                 storage_region_spde,
                 covariates_descriptor,
                 insitu_biases=False,
                 breakpoints_file=None,
                 global_biases=False,
                 global_biases_group_list=[],
                 compute_uncertainties=False,
                 method='EXACT',
                 compute_sample=False,
                 sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3],
                 neighbourhood_level=0,
                 region_index=0,
                 regionspec='LocalSubRegion'):

        # initialise the OptimizationSystem
        super(RegionOptimizationSystem_EUSTACE,
              self).__init__(components=[
                  SpaceTimeComponent(
                      ClimatologyDefinition(covariates_descriptor),
                      storage_climatology, True, compute_uncertainties, method,
                      compute_sample, sample_size),
                  SpaceTimeComponent(
                      LargeScaleDefinition(insitu_biases, breakpoints_file),
                      storage_large_scale, True, compute_uncertainties, method,
                      compute_sample, sample_size),
                  SpatialComponent(
                      PureBiasComponentDefinition(global_biases,
                                                  global_biases_group_list),
                      storage_local_bias, compute_uncertainties, method,
                      compute_sample, sample_size),
                  DelayedSpatialComponent(
                      LocalViewDefinition(neighbourhood_level, region_index,
                                          regionspec), storage_region_spde,
                      compute_uncertainties, method, compute_sample,
                      sample_size)
              ],
                             observable=ObservationSource.TMEAN)
예제 #6
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(description='Advanced standard example using a few days of EUSTACE data')
    parser.add_argument('outpath', help='directory where the output should be redirected')
    parser.add_argument('--json_descriptor', default = None, help='a json descriptor containing the covariates to include in the climatology model')
    parser.add_argument('--land_biases', action='store_true', help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases', action='store_true', help='include global satellite bias terms')
    parser.add_argument('--n_iterations', type=int, default=5, help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))

    # Sources to use
    sources = [ 'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice', 'insitu_land', 'insitu_ocean' ]    

    #SETUP
    # setup for the seasonal core: climatology covariates setup read from file
    seasonal_setup = {'n_triangulation_divisions':5,
		      'n_harmonics':4,
		      'n_spatial_components':6,
		      'amplitude':2.,
		      'space_length_scale':5., # length scale in units of degrees
		     }
    grandmean_amplitude = 15.0
    
    # setup for the large scale component
    spacetime_setup = {'n_triangulation_divisions':2,
		       'alpha':2,
		       'starttime':0,
		       'endtime':10.,
		       'n_nodes':2,
		       'overlap_factor':2.5,
		       'H':1,
		       'amplitude':1.,
		       'space_lenght_scale':15.0, # length scale in units of degrees
		       'time_length_scale':15.0   # length scal in units of days
		      }
    bias_amplitude = .9

    # setup for the local component
    local_setup = {'n_triangulation_divisions':6,
                   'amplitude':2.,
                   'space_length_scale':2. # length scale in units of degrees
                  }
    globalbias_amplitude = 15.0

    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects    
    if args.json_descriptor is not None:
      loader = LoadCovariateElement(args.json_descriptor)
      loader.check_keys()
      covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
      print('The following fields have been added as covariates of the climatology model')
      print(loader.data.keys())
    else:
      covariate_elements, covariate_hyperparameters = [], []

    climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=seasonal_setup['n_triangulation_divisions'], 
							       n_harmonics=seasonal_setup['n_harmonics'], 
							       include_local_mean=True), 
					       GrandMeanElement()]+covariate_elements)       
    climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=seasonal_setup['n_spatial_components'], 
										       common_log_sigma=numpy.log(seasonal_setup['amplitude']), 
										       common_log_rho=numpy.log(numpy.radians(seasonal_setup['space_length_scale']))), 
							       CovariateHyperparameters(numpy.log(grandmean_amplitude))] + covariate_hyperparameters )
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(climatology_element, climatology_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                         compute_uncertainties=True, method='APPROXIMATED',
                                                                         compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects    
    if args.land_biases:
	bias_element, bias_hyperparameters = [InsituLandBiasElement(BREAKPOINTS_FILE)], [CovariateHyperparameters(numpy.log(bias_amplitude))]
	print('Adding bias terms for insitu land homogenization')
    else:
	bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement( [SpaceTimeKroneckerElement(n_triangulation_divisions=spacetime_setup['n_triangulation_divisions'], 
                                                                         alpha=spacetime_setup['alpha'], 
                                                                         starttime=spacetime_setup['starttime'], 
                                                                         endtime=spacetime_setup['endtime'], 
                                                                         n_nodes=spacetime_setup['n_nodes'], 
                                                                         overlap_factor=spacetime_setup['overlap_factor'], 
                                                                         H=spacetime_setup['H'])] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters( [SpaceTimeSPDEHyperparameters(space_log_sigma=numpy.log(spacetime_setup['amplitude']),
                                                                                            space_log_rho=numpy.log(numpy.radians(spacetime_setup['space_lenght_scale'])), 
                                                                                            time_log_rho=numpy.log(spacetime_setup['time_length_scale']))] + bias_hyperparameters) 
    large_scale_component =  SpaceTimeComponent(ComponentStorage_InMemory(large_scale_element, large_scale_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                          compute_uncertainties=True, method='APPROXIMATED',
                                                                          compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])
                                 
    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms    
    if args.global_biases:
	bias_elements = [BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST]
	bias_hyperparameters = [CovariateHyperparameters(numpy.log(globalbias_amplitude)) for index in range(len(GLOBAL_BIASES_GROUP_LIST))]
	print('Adding global bias terms for all the surfaces')
    else:
	bias_elements, bias_hyperparameters = [], []

    local_scale_element = CombinationElement([LocalElement(n_triangulation_divisions=local_setup['n_triangulation_divisions'])] + bias_elements)
    local_scale_hyperparameters = CombinationHyperparameters([LocalHyperparameters(log_sigma=numpy.log(local_setup['amplitude']), 
                                                                                   log_rho=numpy.log(numpy.radians(local_setup['space_length_scale'])))] + bias_hyperparameters)
    local_component = SpatialComponent(ComponentStorage_InMemory(local_scale_element, local_scale_hyperparameters), SpatialComponentSolutionStorage_InMemory(), 
                                                                 compute_uncertainties=True, method='APPROXIMATED',
                                                                 compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # Analysis system using the specified components, for the Tmean observable
    print 'Analysing inputs'

    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [ AnalysisSystemInputLoaderRawBinary_Sources(basepath, source, time_indices) for source in sources ]

    for iteration in range(args.n_iterations):
	
	message = 'Iteration {}'.format(iteration)
	print(message)
	
	# Update with data
	analysis_system.update(inputloaders, time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-90.+definitions.GLOBAL_FIELD_RESOLUTION/2., 90.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-180.+definitions.GLOBAL_FIELD_RESOLUTION/2., 180.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # Evaluate expected value at these locations
        for field in ['MAP', 'post_STD']:
	  print 'Evaluating: ',field
	  result_expected_value = analysis_system.evaluate_expected_value('MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  result_expected_uncertainties = analysis_system.evaluate_expected_value('post_STD', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  
	print 'Evaluating: climatology fraction'
	climatology_fraction = analysis_system.evaluate_climatology_fraction(outputstructure, [1,1], 1000)

	print 'Evaluating: the sample'
	sample = analysis_system.evaluate_projected_sample(outputstructure)

	# Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(outputdate.year, outputdate.month, outputdate.day)
	pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, 
            time_index,
            'Infilling Example',
            'UNVERSIONED',
            definitions.TAS.name,
            '',
            'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days', 
            '')
        filebuilder.add_global_field(definitions.TAS, result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TASUNCERTAINTY, result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TAS_CLIMATOLOGY_FRACTION, climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

	for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
	  variable = copy.deepcopy(definitions.TASENSEMBLE)
	  variable.name = variable.name + '_' + str(index)
	  selected_sample = sample[:,index].ravel()+result_expected_value
	  filebuilder.add_global_field(variable, selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))
	  
	filebuilder.save_and_close()

    print 'Complete'
예제 #7
0
    def test_mini_world_large_and_local(self):

        # Use a number of time steps
        number_of_simulated_time_steps = 30

        # Large-scale spatial variability
        simulated_large_variation = 10.0

        # Local variability
        simulated_local_variation = 1.0

        # Iterations to use
        number_of_solution_iterations = 5

        # Build system

        # Large-scale factor
        element_large = SpaceTimeKroneckerElement(
            n_triangulation_divisions=1,
            alpha=2,
            starttime=0,
            endtime=number_of_simulated_time_steps + 1,
            n_nodes=number_of_simulated_time_steps + 2,
            overlap_factor=2.5,
            H=1)
        initial_hyperparameters_large = SpaceTimeSPDEHyperparameters(
            space_log_sigma=0.0,
            space_log_rho=numpy.log(numpy.radians(5.0)),
            time_log_rho=numpy.log(1.0 / 365.0))

        component_large = SpaceTimeComponent(
            ComponentStorage_InMemory(element_large,
                                      initial_hyperparameters_large),
            SpaceTimeComponentSolutionStorage_InMemory())

        # And a local process
        component_local = SpatialComponent(
            ComponentStorage_InMemory(
                LocalElement(n_triangulation_divisions=3),
                LocalHyperparameters(log_sigma=0.0,
                                     log_rho=numpy.log(numpy.radians(5.0)))),
            SpatialComponentSolutionStorage_InMemory())

        analysis_system = AnalysisSystem([component_large, component_local],
                                         ObservationSource.TMEAN,
                                         log=StringIO())
        # analysis_system = AnalysisSystem([ component_large ], ObservationSource.TMEAN)
        # analysis_system = AnalysisSystem([ component_local ], ObservationSource.TMEAN)

        # use fixed locations from icosahedron
        fixed_locations = cartesian_to_polar2d(
            MeshIcosahedronSubdivision.build(3).points)

        # random measurement at each location
        numpy.random.seed(8976)
        field_basis = simulated_large_variation * numpy.random.randn(
            fixed_locations.shape[0])

        # some time function that varies over a year
        time_basis = numpy.cos(
            numpy.linspace(0.1, 1.75 * numpy.pi,
                           number_of_simulated_time_steps))

        # kronecker product of the two
        large_scale_process = numpy.kron(field_basis,
                                         numpy.expand_dims(time_basis, 1))

        # Random local changes where mean change at each time is zero
        # local_process = simulated_local_variation * numpy.random.randn(large_scale_process.shape[0], large_scale_process.shape[1])
        # local_process -= numpy.tile(local_process.mean(axis=1), (local_process.shape[1], 1)).T

        local_process = numpy.zeros(large_scale_process.shape)
        somefield = simulated_local_variation * numpy.random.randn(
            1, large_scale_process.shape[1])
        somefield -= somefield.ravel().mean()
        local_process[10, :] = somefield
        local_process[11, :] = -somefield

        # Add the two processes
        measurement = large_scale_process + local_process

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(fixed_locations,
                                                      measurement, 0.001)

        # Simulate evaluation of this time index
        simulated_time_indices = range(number_of_simulated_time_steps)

        # All systems linear so single update should be ok
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Get all results
        result = numpy.zeros(measurement.shape)
        for t in range(number_of_simulated_time_steps):
            result[t, :] = analysis_system.evaluate_expected_value(
                'MAP',
                SimulatedObservationStructure(t, fixed_locations, None, None),
                flag='POINTWISE')

        disparity_large_scale = (numpy.abs(result -
                                           large_scale_process)).ravel().max()
        # print 'large scale disparity: ', disparity_large_scale

        disparity_overall = (numpy.abs(result - measurement)).ravel().max()
        # print 'overall disparity: ', disparity_overall

        numpy.testing.assert_almost_equal(result, measurement, decimal=4)
        self.assertTrue(disparity_overall < 1E-4)
예제 #8
0
    def test_mini_world_noiseless(self):

        number_of_simulated_time_steps = 1

        # Build system
        element = SeasonalElement(n_triangulation_divisions=3,
                                  n_harmonics=5,
                                  include_local_mean=True)
        hyperparameters = SeasonalHyperparameters(n_spatial_components=6,
                                                  common_log_sigma=0.0,
                                                  common_log_rho=0.0)

        component = SpaceTimeComponent(
            ComponentStorage_InMemory(element, hyperparameters),
            SpaceTimeComponentSolutionStorage_InMemory())

        analysis_system = AnalysisSystem([component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # use fixed locations from icosahedron
        fixed_locations = cartesian_to_polar2d(
            MeshIcosahedronSubdivision.build(3).points)

        # random measurement at each location
        numpy.random.seed(8976)
        field_basis = numpy.random.randn(fixed_locations.shape[0])
        #print(field_basis.shape)
        #time_basis = numpy.array(harmonics_list)
        # some time function that varies over a year
        #decimal_years = numpy.array([datetime_to_decimal_year(epoch_plus_days(step)) for step in range(number_of_simulated_time_steps)])
        time_basis = numpy.cos(
            numpy.linspace(0.1, 1.75 * numpy.pi,
                           number_of_simulated_time_steps))
        # kronecker product of the two
        #print(numpy.expand_dims(time_basis, 1))
        measurement = numpy.kron(field_basis, numpy.expand_dims(
            time_basis, 1))  #numpy.expand_dims(time_basis, 1))

        #print(measurement.shape)
        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(fixed_locations,
                                                      measurement, 0.0001)

        # Simulate evaluation of this time index
        simulated_time_indices = range(number_of_simulated_time_steps)

        # Iterate
        for iteration in range(5):
            analysis_system.update([simulated_input_loader],
                                   simulated_time_indices)

    # Get all results
        result = numpy.zeros(measurement.shape)
        for t in range(number_of_simulated_time_steps):
            result[t, :] = analysis_system.evaluate_expected_value(
                'MAP',
                SimulatedObservationStructure(t, fixed_locations, None, None),
                flag='POINTWISE')

    # Should be very close to original because specified noise is low
        numpy.testing.assert_almost_equal(result, measurement)
        max_disparity = (numpy.abs(result - measurement)).ravel().max()
        self.assertTrue(max_disparity < 1E-5)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-60., 60., num=5),
            longitudes=numpy.linspace(-90., 90, num=10))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 10)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
예제 #9
0
    def test_mini_world_noiseless(self):

        # Use a number of time steps
        number_of_simulated_time_steps = 1

        # Build system
        element = SpaceTimeFactorElement(
            n_triangulation_divisions=3,
            alpha=2,
            starttime=0,
            endtime=number_of_simulated_time_steps + 1,
            n_nodes=number_of_simulated_time_steps + 2,
            overlap_factor=2.5,
            H=1)
        initial_hyperparameters = SpaceTimeSPDEHyperparameters(
            space_log_sigma=0.0,
            space_log_rho=numpy.log(numpy.radians(45.0)),
            time_log_rho=numpy.log(3.0 / 365.0))
        component = SpaceTimeComponent(
            ComponentStorage_InMemory(element, initial_hyperparameters),
            SpaceTimeComponentSolutionStorage_InMemory())
        analysis_system = AnalysisSystem([component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # use fixed locations from icosahedron
        fixed_locations = cartesian_to_polar2d(
            MeshIcosahedronSubdivision.build(3).points)

        # random measurement at each location
        numpy.random.seed(8976)
        field_basis = 10.0 * numpy.random.randn(fixed_locations.shape[0])

        # some time function that varies over a year
        time_basis = numpy.cos(
            numpy.linspace(0.1, 1.75 * numpy.pi,
                           number_of_simulated_time_steps))

        # kronecker product of the two
        measurement = numpy.kron(field_basis, numpy.expand_dims(time_basis, 1))

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(fixed_locations,
                                                      measurement, 0.01)

        # Simulate evaluation of this time index
        simulated_time_indices = range(number_of_simulated_time_steps)

        # Iterate
        for iteration in range(5):
            analysis_system.update([simulated_input_loader],
                                   simulated_time_indices)

        # Get all results
        result = numpy.zeros(measurement.shape)
        for t in range(number_of_simulated_time_steps):
            result[t, :] = analysis_system.evaluate_expected_value(
                'MAP',
                SimulatedObservationStructure(t, fixed_locations, None, None),
                flag='POINTWISE')

        # Should be very close to original because specified noise is low
        numpy.testing.assert_almost_equal(result, measurement)
        max_disparity = (numpy.abs(result - measurement)).ravel().max()
        self.assertTrue(max_disparity < 1E-5)
예제 #10
0
def main():

    print 'EUSTACE example using HadCRUT4 monthly data'

    # Input data path
    input_basepath = os.path.join(WORKSPACE_PATH, 'data/incoming/HadCRUT4.5.0.0')

    # Input filenames
    input_filenames = [
        'hadcrut4_median_netcdf.nc',
        'hadcrut4_uncorrelated_supplementary.nc',
        'hadcrut4_blended_uncorrelated.nc' ]

    # Months to process
    time_indices = range(2)

    # Climatology component
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(SeasonalElement(n_triangulation_divisions=5, n_harmonics=5, include_local_mean=True),
                                                                         SeasonalHyperparameters(n_spatial_components=6, common_log_sigma=1.0, common_log_rho=0.0)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Number of factors for large scale (factor analysis) component and initial hyperparameters
    n_factors = 5
    factors = [ ]
    factor_hyperparameters = [ ]
    for factor_index in range(n_factors):

        factor_hyperparameters.append( SpaceTimeSPDEHyperparameters(
                space_log_sigma=0.0,
                space_log_rho=numpy.log(10.0 * numpy.pi/180 + 25.0 * numpy.pi/180 *(n_factors - factor_index) / n_factors),
                time_log_rho=numpy.log(1/12.0 + 6/12.0*(n_factors - factor_index) / n_factors)) )

        factors.append( SpaceTimeFactorElement(n_triangulation_divisions=5, alpha=2, starttime=0, endtime=36, overlap_factor=2.5, H=1) )

    # Large scale (factor analysis) component
    large_scale_component = SpaceTimeComponent(ComponentStorage_InMemory(CombinationElement(factors), CombinationHyperparameters(factor_hyperparameters)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Local component
    local_component = SpatialComponent(ComponentStorage_InMemory(LocalElement(n_triangulation_divisions=4), 
                                                                 LocalHyperparameters(log_sigma=0.0, log_rho=numpy.log(10.0 * numpy.pi/180))),
                                       SpatialComponentSolutionStorage_InMemory())

    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Make filelist
    input_filelist = [ os.path.join(input_basepath, filename) for filename in input_filenames ]

    # Object to load HadCRUT4 inputs at time indices
    inputloader = AnalysisSystemInputLoaderHadCRUT4(input_filelist)

    # Update with data
    analysis_system.update([ inputloader ], time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Make output filename
        outputdate = inputloader.datetime_at_time_index(time_index)
        pathname = 'example_output_{0:04d}{1:02d}.nc'.format(outputdate.year, outputdate.month)
        print 'Saving: ', pathname

        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-87.5, 87.5, num=36),
            longitudes=numpy.linspace(-177.5, 177.5, num=72))

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(outputstructure)

        # Save results
        filebuilder = FileBuilderHadCRUT4ExampleOutput(pathname, outputstructure)
        filebuilder.add_global_field(TAS_ANOMALY, result_expected_value.reshape(1,36,72))
        filebuilder.save_and_close()

    print 'Complete'
예제 #11
0
    def test_process_observations_no_uncertainties(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 5.0  0.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [ 0.0  5.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  13.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   80.65 ]     [ 154.0 ]
        #
        # => x = [ -0.60697861 ]
        #        [  1.78530506 ]
        #

        c = SpaceTimeComponent(ComponentStorage_InMemory(
            TestSpaceTimeComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                               SpaceTimeComponentSolutionStorage_InMemory(),
                               sample_size=666)
        s = c.component_solution()
        self.assertIsInstance(s, SpaceTimeComponentSolution)
        self.assertFalse(s.compute_uncertainties)
        test_offset = numpy.array([2.0, 3.0])
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=21),
            test_offset[0:1])
        s.update_time_step()
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=532),
            test_offset[1:2])
        s.update_time_step()
        s.update()

        numpy.testing.assert_almost_equal(
            s.solutionstorage.state, numpy.array([-0.60697861, 1.78530506]))

        # No marginal variances should have been computed at all, same for the sample
        self.assertEqual(None, s.solutionstorage.state_marginal_std)
        self.assertEqual(None, s.solutionstorage.state_sample)

        for time, expected_array in zip([21, 532], [
                numpy.array([-1.5 * -0.60697861 + 2.2 * 1.78530506]),
                numpy.array([3.3 * 1.78530506])
        ]):
            # Observation at time t=t* should be design matrix for that time multiplied by expected state
            numpy.testing.assert_almost_equal(
                s.solution_observation_expected_value(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)),
                expected_array)

            # In this case we are considering a generical model solving iteration for the model, no marginal variances stored, hence we expect 0. as observation uncertainties
            numpy.testing.assert_array_equal(
                s.solution_observation_expected_uncertainties(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)),
                0.)
            # check samples are zero
            numpy.testing.assert_array_equal(
                0.,
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)))
            # check default number of samples
            self.assertEqual(
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(
                        t=time)).shape[1], 666)
예제 #12
0
    def test_process_observations_compute_uncertainties(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 5.0  0.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [ 0.0  5.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  13.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   80.65 ]     [ 154.0 ]
        #
        # => x = [ -0.60697861 ]
        #        [  1.78530506 ]
        #

        c = SpaceTimeComponent(ComponentStorage_InMemory(
            TestSpaceTimeComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                               SpaceTimeComponentSolutionStorage_InMemory(),
                               compute_uncertainties=True)
        s = c.component_solution()
        self.assertIsInstance(s, SpaceTimeComponentSolution)
        self.assertTrue(s.compute_uncertainties)
        test_offset = numpy.array([2.0, 3.0])
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=21),
            test_offset[0:1])
        s.update_time_step()
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=532),
            test_offset[1:2])
        s.update_time_step()
        s.update()

        # No sample should have been computed at all
        self.assertEqual(None, s.solutionstorage.state_sample)

        # In this case we are considering the last iteration of model solving, hence marginal variances should have been stored
        expected_marginal_std = numpy.sqrt(
            numpy.diag(
                numpy.linalg.inv(numpy.array([[13.25, -16.5], [-16.5,
                                                               80.65]]))))
        numpy.testing.assert_array_almost_equal(
            s.solutionstorage.state_marginal_std, expected_marginal_std)

        # Now we compute the projection of marginal variances onto the given observations
        for time in [532]:
            # Observation at time t=t* should be design matrix for that time multiplied by expected state
            expected_projection = TestSpaceTimeComponentSolution.TestDesign(
                t=time).design_function(expected_marginal_std)
            numpy.testing.assert_almost_equal(
                s.solution_observation_expected_uncertainties(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)),
                expected_projection)
            # check samples are zero
            numpy.testing.assert_array_equal(
                0.,
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)))
            # check default number of samples
            self.assertEqual(
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(
                        t=time)).shape[1], 1)
예제 #13
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(
        description='Advanced standard example using a few days of EUSTACE data'
    )
    parser.add_argument('outpath',
                        help='directory where the output should be redirected')
    parser.add_argument(
        '--json_descriptor',
        default=None,
        help=
        'a json descriptor containing the covariates to include in the climatology model'
    )
    parser.add_argument('--land_biases',
                        action='store_true',
                        help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases',
                        action='store_true',
                        help='include global satellite bias terms')
    parser.add_argument('--n_iterations',
                        type=int,
                        default=5,
                        help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    #time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))
    #time_indices = range(int(days_since_epoch(datetime(1906, 2, 1))), int(days_since_epoch(datetime(1906, 2, 2))))

    date_list = [
        datetime(2006, 1, 1) + relativedelta(days=k) for k in range(3)
    ]

    #backwards_list = [date_list[i] for i in range(11, -1, -1)]
    #date_list = backwards_list

    time_indices = [int(days_since_epoch(date)) for date in date_list]

    # Sources to use
    sources = [
        'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice',
        'insitu_land', 'insitu_ocean'
    ]
    sources = ['insitu_land', 'insitu_ocean']
    #sources = [ 'surfaceairmodel_land' ]
    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects

    if args.json_descriptor is not None:
        loader = LoadCovariateElement(args.json_descriptor)
        loader.check_keys()
        covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters(
        )
        print(
            'The following fields have been added as covariates of the climatology model'
        )
        print(loader.data.keys())
    else:
        covariate_elements, covariate_hyperparameters = [], []

    #climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False), GrandMeanElement()]+covariate_elements)
    #climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0), CovariateHyperparameters(numpy.log(15.0))] + covariate_hyperparameters )

    climatology_element = CombinationElement([
        GrandMeanElement(),
    ] + covariate_elements)
    climatology_hyperparameters = CombinationHyperparameters([
        CovariateHyperparameters(numpy.log(15.0)),
    ] + covariate_hyperparameters)

    #climatology_element =SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False)
    #climatology_hyperparameters = SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0)

    climatology_component = SpaceTimeComponent(
        ComponentStorage_InMemory(climatology_element,
                                  climatology_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects

    if args.land_biases:
        bias_element, bias_hyperparameters = [
            InsituLandBiasElement(BREAKPOINTS_FILE)
        ], [CovariateHyperparameters(numpy.log(.9))]
        print('Adding bias terms for insitu land homogenization')
    else:
        bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement([
        SpaceTimeKroneckerElement(n_triangulation_divisions=2,
                                  alpha=2,
                                  starttime=-30,
                                  endtime=365 * 1 + 30,
                                  n_nodes=12 * 1 + 2,
                                  overlap_factor=2.5,
                                  H=1)
    ] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters([
        SpaceTimeSPDEHyperparameters(space_log_sigma=0.0,
                                     space_log_rho=numpy.log(
                                         numpy.radians(15.0)),
                                     time_log_rho=numpy.log(15.0))
    ] + bias_hyperparameters)
    large_scale_component = SpaceTimeComponent(
        ComponentStorage_InMemory(large_scale_element,
                                  large_scale_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms

    if args.global_biases:
        bias_elements = [
            BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST
        ]
        bias_hyperparameters = [
            CovariateHyperparameters(numpy.log(15.0)) for index in range(3)
        ]
        print('Adding global bias terms for all the surfaces')
    else:
        bias_elements, bias_hyperparameters = [], []

    n_triangulation_divisions_local = 7
    local_log_sigma = numpy.log(5)
    local_log_rho = numpy.log(numpy.radians(5.0))
    local_element = NonStationaryLocal(
        n_triangulation_divisions=n_triangulation_divisions_local)
    n_local_nodes = local_element.spde.n_latent_variables()
    local_scale_element = CombinationElement([local_element] + bias_elements)
    local_hyperparameters = ExpandedLocalHyperparameters(
        log_sigma=numpy.repeat(local_log_sigma, n_local_nodes),
        log_rho=numpy.repeat(local_log_rho, n_local_nodes))
    local_scale_hyperparameters = CombinationHyperparameters(
        [local_hyperparameters] + bias_hyperparameters)
    local_component = DelayedSpatialComponent(
        ComponentStorage_InMemory(local_scale_element,
                                  local_scale_hyperparameters),
        SpatialComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')
    print "hyperparameter storage:", local_component.storage.hyperparameters
    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    ##analysis_system = AnalysisSystem(
    ##    [ climatology_component, large_scale_component, local_component ],
    ##    ObservationSource.TMEAN)

    analysis_system = OptimizationSystem(
        [climatology_component, local_component], ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [
        AnalysisSystemInputLoaderRawBinary_Sources(basepath, source,
                                                   time_indices)
        for source in sources
    ]

    for iteration in range(args.n_iterations):

        message = 'Iteration {}'.format(iteration)
        print(message)

        # Update with data
        analysis_system.update(inputloaders, time_indices)

    ##################################################

    # Optimize local model hyperparameters

    # Loop over local regions, generate optimization systems, fit hyperparameters and save

    # split spde and bias models for local component into two components
    global_spde_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement([local_element]),
        CombinationHyperparameters([local_hyperparameters]))
    global_spde_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    global_spde_sub_component = DelayedSpatialComponent(
        global_spde_sub_component_definition,
        global_spde_sub_component_storage_solution)

    bias_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement(bias_elements),
        CombinationHyperparameters(bias_hyperparameters))
    bias_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    bias_sub_component = DelayedSpatialComponent(
        bias_sub_component_definition, bias_sub_component_storage_solution)

    element_optimisation_flags = [True, False, False,
                                  False]  # one spde, three biases

    for time_key in time_indices:
        split_states_time(local_component, global_spde_sub_component,
                          bias_sub_component, element_optimisation_flags,
                          time_key)

    # Define subregions and extract their states
    neighbourhood_level = 1

    n_subregions = global_spde_sub_component.storage.element_read(
    ).combination[0].spde.n_triangles_at_level(neighbourhood_level)
    hyperparameter_file_template = "local_hyperparameters.%i.%i.%i.npy"

    fit_hyperparameters = True
    optimization_component_index = 2
    if fit_hyperparameters:
        for region_index in range(n_subregions):
            # Setup model for local subregion of neighours with super triangle
            view_flags = [
                True,
            ]
            region_element = CombinationElement([
                LocalSubRegion(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
            ])
            region_hyperparameters = ExtendedCombinationHyperparameters([
                LocalHyperparameters(log_sigma=local_log_sigma,
                                     log_rho=local_log_rho)
            ])
            region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
            )
            region_sub_component = DelayedSpatialComponent(
                ComponentStorage_InMemory(region_element,
                                          region_hyperparameters),
                region_component_storage_solution)

            for time_key in time_indices:
                print "region_index, time_key:", region_index, time_key
                extract_local_view_states_time(global_spde_sub_component,
                                               region_sub_component,
                                               view_flags, time_key)

            print "running optimization for region:", region_index

            region_optimization_system = OptimizationSystem([
                climatology_component, bias_sub_component, region_sub_component
            ], ObservationSource.TMEAN)

            for time_key in time_indices:
                region_optimization_system.update_component_time(
                    inputloaders, optimization_component_index, time_key)

            # commented version that works for few days inputs
            #region_optimization_system.components[optimization_component_index].component_solution().optimize()
            #region_optimization_system.components[optimization_component_index].storage.hyperparameters.get_array()
            #hyperparameter_file = os.path.join(args.outpath, hyperparameter_file_template % (n_triangulation_divisions_local, neighbourhood_level, region_index) )
            #region_sub_component.storage.hyperparameters.values_to_npy_savefile( hyperparameter_file )

            # replaced with version for full processing based json dump of input files - need to generate the input_descriptor dict
            hyperparameter_file = os.path.join(
                args.outpath, hyperparameter_file_template %
                (n_triangulation_divisions_local, neighbourhood_level,
                 region_index))
            region_optimization_system.process_inputs(
                input_descriptor, optimization_component_index, time_indices)
            region_optimization_system.optimize_component(
                optimization_component_index,
                hyperparameter_storage_file=hyperparameter_file)

            fitted_hyperparameters_converted = region_sub_component.storage.hyperparameters.get_array(
            )
            fitted_hyperparameters_converted[0] = numpy.exp(
                fitted_hyperparameters_converted[0])
            fitted_hyperparameters_converted[1] = numpy.exp(
                fitted_hyperparameters_converted[1]) * 180.0 / numpy.pi
            print 'fitted_hyperparameters_converted:', fitted_hyperparameters_converted

    # Setup model for the super triangle without neighbours for hyperparameter merging
    region_spdes = []
    region_hyperparameter_values = []
    for region_index in range(n_subregions):
        # Redefine the region sub component as a supertriangle rather than a neighbourhood
        region_element = CombinationElement([
            LocalSuperTriangle(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
        ])
        region_hyperparameters = ExtendedCombinationHyperparameters([
            LocalHyperparameters(log_sigma=local_log_sigma,
                                 log_rho=local_log_rho)
        ])
        region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
        )
        region_sub_component = DelayedSpatialComponent(
            ComponentStorage_InMemory(region_element, region_hyperparameters),
            region_component_storage_solution)

        # Read the optimized hyperparameters
        hyperparameter_file = os.path.join(
            args.outpath,
            hyperparameter_file_template % (n_triangulation_divisions_local,
                                            neighbourhood_level, region_index))
        region_sub_component.storage.hyperparameters.values_from_npy_savefile(
            hyperparameter_file)

        # Append the spde model and hyperparameters to their lists for merging
        region_spdes.append(region_element.combination[0].spde)
        region_hyperparameter_values.append(
            region_sub_component.storage.hyperparameters.get_array())

    # merge and save hyperparameters
    full_spde = local_element.spde
    new_hyperparameter_values, global_sigma_design, global_rho_design = full_spde.merge_local_parameterisations(
        region_spdes, region_hyperparameter_values, merge_method='exp_average')

    local_hyperparameters.set_array(new_hyperparameter_values)
    hyperparameter_file_merged = "merged_hyperparameters.%i.%i.npy" % (
        n_triangulation_divisions_local, neighbourhood_level)
    local_hyperparameters.values_to_npy_savefile(
        os.path.join(args.outpath, hyperparameter_file_merged))

    # Refit local model with the optimized hyperparameters
    analysis_system.update_component(inputloaders, 1, time_indices)

    ##################################################

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index,
            outputdate,
            latitudes=numpy.linspace(-89.875,
                                     89.875,
                                     num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-179.875,
                                      179.875,
                                      num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # print 'Size of grid : ', outputstructure.number_of_observations()

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        result_expected_uncertainties = analysis_system.evaluate_expected_value(
            'post_STD', outputstructure, 'POINTWISE')

        # Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(
            outputdate.year, outputdate.month, outputdate.day)
        pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, time_index, 'Infilling Example', 'UNVERSIONED',
            definitions.TAS.name, '', 'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days',
            '')
        filebuilder.add_global_field(
            definitions.TAS,
            result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            result_expected_uncertainties.reshape(
                definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.save_and_close()

    print 'Complete'