def _validate_data_checks(self, data_checks): """Validate data_checks parameter. Arguments: data_checks (DataChecks, list(Datacheck), str, None): Input to validate. If not of the right type, raise an exception. Returns: An instance of DataChecks used to perform checks before search. """ if isinstance(data_checks, DataChecks): return data_checks elif isinstance(data_checks, list): return AutoMLDataChecks(data_checks) elif isinstance(data_checks, str): if data_checks == "auto": return DefaultDataChecks( problem_type=self.problem_type, objective=self.objective, n_splits=self.data_splitter.get_n_splits()) elif data_checks == "disabled": return EmptyDataChecks() else: raise ValueError( "If data_checks is a string, it must be either 'auto' or 'disabled'. " f"Received '{data_checks}'.") elif data_checks is None: return EmptyDataChecks() else: return DataChecks(data_checks)
def test_empty_data_checks(input_type, X_y_binary): X, y = X_y_binary if input_type != "np": X = pd.DataFrame(X) y = pd.Series(y) if input_type == "ww": X = ww.DataTable(X) y = ww.DataColumn(y) data_checks = EmptyDataChecks() assert data_checks.validate(X, y) == {"warnings": [], "errors": []}