예제 #1
0
def test_simple_imputer_fill_value(data_type):
    if data_type == "numeric":
        X = pd.DataFrame({
            "some numeric": [np.nan, 1, 0],
            "another numeric": [0, np.nan, 2]
        })
        fill_value = -1
        expected = pd.DataFrame({
            "some numeric": [-1, 1, 0],
            "another numeric": [0, -1, 2]
        })
    else:
        X = pd.DataFrame({
            "categorical with nan":
            pd.Series([np.nan, "1", np.nan, "0", "3"], dtype='category'),
            "object with nan": ["b", "b", np.nan, "c", np.nan]
        })
        fill_value = "fill"
        expected = pd.DataFrame({
            "categorical with nan":
            pd.Series(["fill", "1", "fill", "0", "3"], dtype='category'),
            "object with nan":
            pd.Series(["b", "b", "fill", "c", "fill"], dtype='category'),
        })
    y = pd.Series([0, 0, 1, 0, 1])
    imputer = SimpleImputer(impute_strategy="constant", fill_value=fill_value)
    imputer.fit(X, y)
    transformed = imputer.transform(X, y)
    assert_frame_equal(expected, transformed.to_dataframe(), check_dtype=False)

    imputer = SimpleImputer(impute_strategy="constant", fill_value=fill_value)
    transformed = imputer.fit_transform(X, y)
    assert_frame_equal(expected, transformed.to_dataframe(), check_dtype=False)
예제 #2
0
def test_simple_imputer_boolean_dtype(data_type, make_data_type):
    X = pd.DataFrame([True, np.nan, False, np.nan, True], dtype='boolean')
    y = pd.Series([1, 0, 0, 1, 0])
    X_expected_arr = pd.DataFrame([True, True, False, True, True],
                                  dtype='boolean')
    X = make_data_type(data_type, X)
    imputer = SimpleImputer()
    imputer.fit(X, y)
    X_t = imputer.transform(X)
    assert_frame_equal(X_expected_arr, X_t.to_dataframe())
예제 #3
0
def test_simple_imputer_transform_drop_all_nan_columns_empty():
    X = pd.DataFrame([[np.nan, np.nan, np.nan]])
    transformer = SimpleImputer(impute_strategy='most_frequent')
    assert transformer.fit_transform(X).to_dataframe().empty
    assert_frame_equal(X, pd.DataFrame([[np.nan, np.nan, np.nan]]))

    transformer = SimpleImputer(impute_strategy='most_frequent')
    transformer.fit(X)
    assert transformer.transform(X).to_dataframe().empty
    assert_frame_equal(X, pd.DataFrame([[np.nan, np.nan, np.nan]]))
예제 #4
0
def test_simple_imputer_all_bool_return_original(data_type, make_data_type):
    X = pd.DataFrame([True, True, False, True, True], dtype=bool)
    y = pd.Series([1, 0, 0, 1, 0])
    X = make_data_type(data_type, X)
    y = make_data_type(data_type, y)
    X_expected_arr = pd.DataFrame([True, True, False, True, True], dtype=bool)
    imputer = SimpleImputer()
    imputer.fit(X, y)
    X_t = imputer.transform(X)
    assert_frame_equal(X_expected_arr, X_t)
예제 #5
0
def test_simple_imputer_bool_dtype_object(data_type):
    X = pd.DataFrame([True, np.nan, False, np.nan, True], dtype=object)
    y = pd.Series([1, 0, 0, 1, 0])
    X_expected_arr = pd.DataFrame([True, True, False, True, True],
                                  dtype='category')
    if data_type == 'ww':
        X = ww.DataTable(X)
    imputer = SimpleImputer()
    imputer.fit(X, y)
    X_t = imputer.transform(X)
    assert_frame_equal(X_expected_arr, X_t)
예제 #6
0
def test_simple_imputer_with_none():
    X = pd.DataFrame({
        "int with None": [1, 0, 5, None],
        "float with None": [0.1, 0.0, 0.5, None],
        "all None": [None, None, None, None]
    })
    y = pd.Series([0, 0, 1, 0, 1])
    imputer = SimpleImputer(impute_strategy="mean")
    imputer.fit(X, y)
    transformed = imputer.transform(X, y)
    expected = pd.DataFrame({
        "int with None": [1, 0, 5, 2],
        "float with None": [0.1, 0.0, 0.5, 0.2]
    })
    assert_frame_equal(expected, transformed.to_dataframe(), check_dtype=False)

    X = pd.DataFrame({
        "category with None":
        pd.Series(["b", "a", "a", None], dtype='category'),
        "boolean with None":
        pd.Series([True, None, False, True], dtype='boolean'),
        "object with None": ["b", "a", "a", None],
        "all None": [None, None, None, None]
    })
    y = pd.Series([0, 0, 1, 0, 1])
    imputer = SimpleImputer()
    imputer.fit(X, y)
    transformed = imputer.transform(X, y)
    expected = pd.DataFrame({
        "category with None":
        pd.Series(["b", "a", "a", "a"], dtype='category'),
        "boolean with None":
        pd.Series([True, True, False, True], dtype='boolean'),
        "object with None":
        pd.Series(["b", "a", "a", "a"], dtype='category')
    })
    assert_frame_equal(expected, transformed.to_dataframe(), check_dtype=False)
예제 #7
0
def test_simple_imputer_does_not_reset_index():
    X = pd.DataFrame({'input_val': np.arange(10), 'target': np.arange(10)})
    X.loc[5, 'input_val'] = np.nan
    assert X.index.tolist() == list(range(10))

    X.drop(0, inplace=True)
    y = X.pop('target')
    pd.testing.assert_frame_equal(
        pd.DataFrame({'input_val': [1.0, 2, 3, 4, np.nan, 6, 7, 8, 9]},
                     dtype=float,
                     index=list(range(1, 10))), X)

    imputer = SimpleImputer(impute_strategy="mean")
    imputer.fit(X, y=y)
    transformed = imputer.transform(X)
    pd.testing.assert_frame_equal(
        pd.DataFrame({'input_val': [1, 2, 3, 4, 5, 6, 7, 8, 9]},
                     dtype=float,
                     index=list(range(1, 10))), transformed.to_dataframe())
예제 #8
0
def test_simple_imputer_multitype_with_one_bool(data_type, make_data_type):
    X_multi = pd.DataFrame({
        "bool with nan":
        pd.Series([True, np.nan, False, np.nan, False], dtype='boolean'),
        "bool no nan":
        pd.Series([False, False, False, False, True], dtype=bool),
    })
    y = pd.Series([1, 0, 0, 1, 0])
    X_multi_expected_arr = pd.DataFrame({
        "bool with nan":
        pd.Series([True, False, False, False, False], dtype='boolean'),
        "bool no nan":
        pd.Series([False, False, False, False, True], dtype='boolean'),
    })
    X_multi = make_data_type(data_type, X_multi)

    imputer = SimpleImputer()
    imputer.fit(X_multi, y)
    X_multi_t = imputer.transform(X_multi)
    assert_frame_equal(X_multi_expected_arr, X_multi_t.to_dataframe())
예제 #9
0
def test_simple_imputer_multitype_with_one_bool(data_type):
    X_multi = pd.DataFrame({
        "bool with nan":
        pd.Series([True, np.nan, False, np.nan, False], dtype=object),
        "bool no nan":
        pd.Series([False, False, False, False, True], dtype=bool),
    })
    y = pd.Series([1, 0, 0, 1, 0])
    X_multi_expected_arr = pd.DataFrame({
        "bool with nan":
        pd.Series([True, False, False, False, False], dtype='category'),
        "bool no nan":
        pd.Series([False, False, False, False, True], dtype=object),
    })
    if data_type == 'ww':
        X_multi = ww.DataTable(X_multi)
    imputer = SimpleImputer()
    imputer.fit(X_multi, y)
    X_multi_t = imputer.transform(X_multi)
    assert_frame_equal(X_multi_expected_arr, X_multi_t)
예제 #10
0
def test_simple_imputer_transform_drop_all_nan_columns():
    X = pd.DataFrame({
        "all_nan": [np.nan, np.nan, np.nan],
        "some_nan": [np.nan, 1, 0],
        "another_col": [0, 1, 2]
    })
    transformer = SimpleImputer(impute_strategy='most_frequent')
    transformer.fit(X)
    X_expected_arr = pd.DataFrame({
        "some_nan": [0, 1, 0],
        "another_col": [0, 1, 2]
    })
    assert_frame_equal(X_expected_arr,
                       transformer.transform(X).to_dataframe(),
                       check_dtype=False)
    assert_frame_equal(
        X,
        pd.DataFrame({
            "all_nan": [np.nan, np.nan, np.nan],
            "some_nan": [np.nan, 1, 0],
            "another_col": [0, 1, 2]
        }))
예제 #11
0
def test_simple_imputer_woodwork_custom_overrides_returned_by_components(
        X_df, has_nan, impute_strategy):
    y = pd.Series([1, 2, 1])
    if has_nan:
        X_df.iloc[len(X_df) - 1, 0] = np.nan
    override_types = [Integer, Double, Categorical, NaturalLanguage, Boolean]
    for logical_type in override_types:
        try:
            X = ww.DataTable(X_df, logical_types={0: logical_type})
        except TypeError:
            continue

        impute_strategy_to_use = impute_strategy
        if logical_type in [NaturalLanguage, Categorical]:
            impute_strategy_to_use = "most_frequent"

        imputer = SimpleImputer(impute_strategy=impute_strategy_to_use)
        imputer.fit(X, y)
        transformed = imputer.transform(X, y)
        assert isinstance(transformed, ww.DataTable)
        if impute_strategy_to_use == "most_frequent" or not has_nan:
            assert transformed.logical_types == {0: logical_type}
        else:
            assert transformed.logical_types == {0: Double}