def test_undersample_imbalanced(data_type, make_data_type): X = np.array([[i] for i in range(1000)]) y = np.array([0] * 150 + [1] * 850) X = make_data_type(data_type, X) y = make_data_type(data_type, y) sampling_ratio = 0.25 undersampler = Undersampler(sampling_ratio=sampling_ratio) new_X, new_y = undersampler.fit_transform(X, y) assert len(new_X) == 750 assert len(new_y) == 750 value_counts = new_y.to_series().value_counts() assert value_counts.values[1] / value_counts.values[0] == sampling_ratio pd.testing.assert_series_equal(value_counts, pd.Series([600, 150], index=[1, 0]), check_dtype=False) transform_X, transform_y = undersampler.transform(X, y) if data_type == "ww": X = X.to_dataframe().values y = y.to_series().values elif data_type == "pd": X = X.values y = y.values np.testing.assert_equal(X, transform_X.to_dataframe().values) np.testing.assert_equal(y, transform_y.to_series().values)
def test_none_y(): X = pd.DataFrame([[i] for i in range(5)]) undersampler = Undersampler() with pytest.raises(ValueError, match="y cannot be none"): undersampler.fit(X, None) with pytest.raises(ValueError, match="y cannot be none"): undersampler.fit_transform(X, None) undersampler.fit(X, pd.Series([0] * 4 + [1])) undersampler.transform(X, None)
def test_no_undersample(data_type, make_data_type, X_y_binary): X, y = X_y_binary X = make_data_type(data_type, X) y = make_data_type(data_type, y) undersampler = Undersampler() new_X, new_y = undersampler.fit_transform(X, y) if data_type == "ww": X = X.to_dataframe().values y = y.to_series().values elif data_type == "pd": X = X.values y = y.values np.testing.assert_equal(X, new_X.to_dataframe().values) np.testing.assert_equal(y, new_y.to_series().values)
def test_describe_component(): enc = OneHotEncoder() imputer = Imputer() simple_imputer = SimpleImputer("mean") column_imputer = PerColumnImputer({"a": "mean", "b": ("constant", 100)}) scaler = StandardScaler() feature_selection_clf = RFClassifierSelectFromModel(n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf) feature_selection_reg = RFRegressorSelectFromModel(n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf) drop_col_transformer = DropColumns(columns=['col_one', 'col_two']) drop_null_transformer = DropNullColumns() datetime = DateTimeFeaturizer() text_featurizer = TextFeaturizer() lsa = LSA() pca = PCA() lda = LinearDiscriminantAnalysis() ft = DFSTransformer() us = Undersampler() assert enc.describe(return_dict=True) == {'name': 'One Hot Encoder', 'parameters': {'top_n': 10, 'features_to_encode': None, 'categories': None, 'drop': 'if_binary', 'handle_unknown': 'ignore', 'handle_missing': 'error'}} assert imputer.describe(return_dict=True) == {'name': 'Imputer', 'parameters': {'categorical_impute_strategy': "most_frequent", 'categorical_fill_value': None, 'numeric_impute_strategy': "mean", 'numeric_fill_value': None}} assert simple_imputer.describe(return_dict=True) == {'name': 'Simple Imputer', 'parameters': {'impute_strategy': 'mean', 'fill_value': None}} assert column_imputer.describe(return_dict=True) == {'name': 'Per Column Imputer', 'parameters': {'impute_strategies': {'a': 'mean', 'b': ('constant', 100)}, 'default_impute_strategy': 'most_frequent'}} assert scaler.describe(return_dict=True) == {'name': 'Standard Scaler', 'parameters': {}} assert feature_selection_clf.describe(return_dict=True) == {'name': 'RF Classifier Select From Model', 'parameters': {'number_features': 5, 'n_estimators': 10, 'max_depth': None, 'percent_features': 0.3, 'threshold': -np.inf, 'n_jobs': -1}} assert feature_selection_reg.describe(return_dict=True) == {'name': 'RF Regressor Select From Model', 'parameters': {'number_features': 5, 'n_estimators': 10, 'max_depth': None, 'percent_features': 0.3, 'threshold': -np.inf, 'n_jobs': -1}} assert drop_col_transformer.describe(return_dict=True) == {'name': 'Drop Columns Transformer', 'parameters': {'columns': ['col_one', 'col_two']}} assert drop_null_transformer.describe(return_dict=True) == {'name': 'Drop Null Columns Transformer', 'parameters': {'pct_null_threshold': 1.0}} assert datetime.describe(return_dict=True) == {'name': 'DateTime Featurization Component', 'parameters': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'], 'encode_as_categories': False}} assert text_featurizer.describe(return_dict=True) == {'name': 'Text Featurization Component', 'parameters': {}} assert lsa.describe(return_dict=True) == {'name': 'LSA Transformer', 'parameters': {}} assert pca.describe(return_dict=True) == {'name': 'PCA Transformer', 'parameters': {'n_components': None, 'variance': 0.95}} assert lda.describe(return_dict=True) == {'name': 'Linear Discriminant Analysis Transformer', 'parameters': {'n_components': None}} assert ft.describe(return_dict=True) == {'name': 'DFS Transformer', 'parameters': {"index": "index"}} assert us.describe(return_dict=True) == {'name': 'Undersampler', 'parameters': {"balanced_ratio": 4, "min_samples": 100, "min_percentage": 0.1}} # testing estimators base_classifier = BaselineClassifier() base_regressor = BaselineRegressor() lr_classifier = LogisticRegressionClassifier() en_classifier = ElasticNetClassifier() en_regressor = ElasticNetRegressor() et_classifier = ExtraTreesClassifier(n_estimators=10, max_features="auto") et_regressor = ExtraTreesRegressor(n_estimators=10, max_features="auto") rf_classifier = RandomForestClassifier(n_estimators=10, max_depth=3) rf_regressor = RandomForestRegressor(n_estimators=10, max_depth=3) linear_regressor = LinearRegressor() svm_classifier = SVMClassifier() svm_regressor = SVMRegressor() assert base_classifier.describe(return_dict=True) == {'name': 'Baseline Classifier', 'parameters': {'strategy': 'mode'}} assert base_regressor.describe(return_dict=True) == {'name': 'Baseline Regressor', 'parameters': {'strategy': 'mean'}} assert lr_classifier.describe(return_dict=True) == {'name': 'Logistic Regression Classifier', 'parameters': {'penalty': 'l2', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}} assert en_classifier.describe(return_dict=True) == {'name': 'Elastic Net Classifier', 'parameters': {'alpha': 0.5, 'l1_ratio': 0.5, 'n_jobs': -1, 'max_iter': 1000, "loss": 'log', 'penalty': 'elasticnet'}} assert en_regressor.describe(return_dict=True) == {'name': 'Elastic Net Regressor', 'parameters': {'alpha': 0.5, 'l1_ratio': 0.5, 'max_iter': 1000, 'normalize': False}} assert et_classifier.describe(return_dict=True) == {'name': 'Extra Trees Classifier', 'parameters': {'n_estimators': 10, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}} assert et_regressor.describe(return_dict=True) == {'name': 'Extra Trees Regressor', 'parameters': {'n_estimators': 10, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}} assert rf_classifier.describe(return_dict=True) == {'name': 'Random Forest Classifier', 'parameters': {'n_estimators': 10, 'max_depth': 3, 'n_jobs': -1}} assert rf_regressor.describe(return_dict=True) == {'name': 'Random Forest Regressor', 'parameters': {'n_estimators': 10, 'max_depth': 3, 'n_jobs': -1}} assert linear_regressor.describe(return_dict=True) == {'name': 'Linear Regressor', 'parameters': {'fit_intercept': True, 'normalize': False, 'n_jobs': -1}} assert svm_classifier.describe(return_dict=True) == {'name': 'SVM Classifier', 'parameters': {'C': 1.0, 'kernel': 'rbf', 'gamma': 'scale', 'probability': True}} assert svm_regressor.describe(return_dict=True) == {'name': 'SVM Regressor', 'parameters': {'C': 1.0, 'kernel': 'rbf', 'gamma': 'scale'}} try: xgb_classifier = XGBoostClassifier(eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75) xgb_regressor = XGBoostRegressor(eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75) assert xgb_classifier.describe(return_dict=True) == {'name': 'XGBoost Classifier', 'parameters': {'eta': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'n_estimators': 75}} assert xgb_regressor.describe(return_dict=True) == {'name': 'XGBoost Regressor', 'parameters': {'eta': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'n_estimators': 75}} except ImportError: pass try: cb_classifier = CatBoostClassifier() cb_regressor = CatBoostRegressor() assert cb_classifier.describe(return_dict=True) == {'name': 'CatBoost Classifier', 'parameters': {'allow_writing_files': False, 'n_estimators': 10, 'eta': 0.03, 'max_depth': 6, 'bootstrap_type': None, 'silent': True}} assert cb_regressor.describe(return_dict=True) == {'name': 'CatBoost Regressor', 'parameters': {'allow_writing_files': False, 'n_estimators': 10, 'eta': 0.03, 'max_depth': 6, 'bootstrap_type': None, 'silent': False}} except ImportError: pass try: lg_classifier = LightGBMClassifier() lg_regressor = LightGBMRegressor() assert lg_classifier.describe(return_dict=True) == {'name': 'LightGBM Classifier', 'parameters': {'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 100, 'max_depth': 0, 'num_leaves': 31, 'min_child_samples': 20, 'n_jobs': -1, 'bagging_fraction': 0.9, 'bagging_freq': 0}} assert lg_regressor.describe(return_dict=True) == {'name': 'LightGBM Regressor', 'parameters': {'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 20, 'max_depth': 0, 'num_leaves': 31, 'min_child_samples': 20, 'n_jobs': -1, 'bagging_fraction': 0.9, 'bagging_freq': 0}} except ImportError: pass
def test_init(): parameters = {"sampling_ratio": 1, "min_samples": 1, "min_percentage": 0.5} undersampler = Undersampler(**parameters) assert undersampler.parameters == parameters