예제 #1
0
def test_undersample_imbalanced(data_type, make_data_type):
    X = np.array([[i] for i in range(1000)])
    y = np.array([0] * 150 + [1] * 850)
    X = make_data_type(data_type, X)
    y = make_data_type(data_type, y)

    sampling_ratio = 0.25
    undersampler = Undersampler(sampling_ratio=sampling_ratio)
    new_X, new_y = undersampler.fit_transform(X, y)

    assert len(new_X) == 750
    assert len(new_y) == 750
    value_counts = new_y.to_series().value_counts()
    assert value_counts.values[1] / value_counts.values[0] == sampling_ratio
    pd.testing.assert_series_equal(value_counts,
                                   pd.Series([600, 150], index=[1, 0]),
                                   check_dtype=False)

    transform_X, transform_y = undersampler.transform(X, y)

    if data_type == "ww":
        X = X.to_dataframe().values
        y = y.to_series().values
    elif data_type == "pd":
        X = X.values
        y = y.values

    np.testing.assert_equal(X, transform_X.to_dataframe().values)
    np.testing.assert_equal(y, transform_y.to_series().values)
예제 #2
0
def test_none_y():
    X = pd.DataFrame([[i] for i in range(5)])
    undersampler = Undersampler()
    with pytest.raises(ValueError, match="y cannot be none"):
        undersampler.fit(X, None)
    with pytest.raises(ValueError, match="y cannot be none"):
        undersampler.fit_transform(X, None)
    undersampler.fit(X, pd.Series([0] * 4 + [1]))
    undersampler.transform(X, None)
예제 #3
0
def test_no_undersample(data_type, make_data_type, X_y_binary):
    X, y = X_y_binary
    X = make_data_type(data_type, X)
    y = make_data_type(data_type, y)

    undersampler = Undersampler()
    new_X, new_y = undersampler.fit_transform(X, y)

    if data_type == "ww":
        X = X.to_dataframe().values
        y = y.to_series().values
    elif data_type == "pd":
        X = X.values
        y = y.values

    np.testing.assert_equal(X, new_X.to_dataframe().values)
    np.testing.assert_equal(y, new_y.to_series().values)
예제 #4
0
def test_describe_component():
    enc = OneHotEncoder()
    imputer = Imputer()
    simple_imputer = SimpleImputer("mean")
    column_imputer = PerColumnImputer({"a": "mean", "b": ("constant", 100)})
    scaler = StandardScaler()
    feature_selection_clf = RFClassifierSelectFromModel(n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf)
    feature_selection_reg = RFRegressorSelectFromModel(n_estimators=10, number_features=5, percent_features=0.3, threshold=-np.inf)
    drop_col_transformer = DropColumns(columns=['col_one', 'col_two'])
    drop_null_transformer = DropNullColumns()
    datetime = DateTimeFeaturizer()
    text_featurizer = TextFeaturizer()
    lsa = LSA()
    pca = PCA()
    lda = LinearDiscriminantAnalysis()
    ft = DFSTransformer()
    us = Undersampler()
    assert enc.describe(return_dict=True) == {'name': 'One Hot Encoder', 'parameters': {'top_n': 10,
                                                                                        'features_to_encode': None,
                                                                                        'categories': None,
                                                                                        'drop': 'if_binary',
                                                                                        'handle_unknown': 'ignore',
                                                                                        'handle_missing': 'error'}}
    assert imputer.describe(return_dict=True) == {'name': 'Imputer', 'parameters': {'categorical_impute_strategy': "most_frequent",
                                                                                    'categorical_fill_value': None,
                                                                                    'numeric_impute_strategy': "mean",
                                                                                    'numeric_fill_value': None}}
    assert simple_imputer.describe(return_dict=True) == {'name': 'Simple Imputer', 'parameters': {'impute_strategy': 'mean', 'fill_value': None}}
    assert column_imputer.describe(return_dict=True) == {'name': 'Per Column Imputer', 'parameters': {'impute_strategies': {'a': 'mean', 'b': ('constant', 100)}, 'default_impute_strategy': 'most_frequent'}}
    assert scaler.describe(return_dict=True) == {'name': 'Standard Scaler', 'parameters': {}}
    assert feature_selection_clf.describe(return_dict=True) == {'name': 'RF Classifier Select From Model', 'parameters': {'number_features': 5, 'n_estimators': 10, 'max_depth': None, 'percent_features': 0.3, 'threshold': -np.inf, 'n_jobs': -1}}
    assert feature_selection_reg.describe(return_dict=True) == {'name': 'RF Regressor Select From Model', 'parameters': {'number_features': 5, 'n_estimators': 10, 'max_depth': None, 'percent_features': 0.3, 'threshold': -np.inf, 'n_jobs': -1}}
    assert drop_col_transformer.describe(return_dict=True) == {'name': 'Drop Columns Transformer', 'parameters': {'columns': ['col_one', 'col_two']}}
    assert drop_null_transformer.describe(return_dict=True) == {'name': 'Drop Null Columns Transformer', 'parameters': {'pct_null_threshold': 1.0}}
    assert datetime.describe(return_dict=True) == {'name': 'DateTime Featurization Component',
                                                   'parameters': {'features_to_extract': ['year', 'month', 'day_of_week', 'hour'],
                                                                  'encode_as_categories': False}}
    assert text_featurizer.describe(return_dict=True) == {'name': 'Text Featurization Component', 'parameters': {}}
    assert lsa.describe(return_dict=True) == {'name': 'LSA Transformer', 'parameters': {}}
    assert pca.describe(return_dict=True) == {'name': 'PCA Transformer', 'parameters': {'n_components': None, 'variance': 0.95}}
    assert lda.describe(return_dict=True) == {'name': 'Linear Discriminant Analysis Transformer', 'parameters': {'n_components': None}}
    assert ft.describe(return_dict=True) == {'name': 'DFS Transformer', 'parameters': {"index": "index"}}
    assert us.describe(return_dict=True) == {'name': 'Undersampler', 'parameters': {"balanced_ratio": 4, "min_samples": 100, "min_percentage": 0.1}}
    # testing estimators
    base_classifier = BaselineClassifier()
    base_regressor = BaselineRegressor()
    lr_classifier = LogisticRegressionClassifier()
    en_classifier = ElasticNetClassifier()
    en_regressor = ElasticNetRegressor()
    et_classifier = ExtraTreesClassifier(n_estimators=10, max_features="auto")
    et_regressor = ExtraTreesRegressor(n_estimators=10, max_features="auto")
    rf_classifier = RandomForestClassifier(n_estimators=10, max_depth=3)
    rf_regressor = RandomForestRegressor(n_estimators=10, max_depth=3)
    linear_regressor = LinearRegressor()
    svm_classifier = SVMClassifier()
    svm_regressor = SVMRegressor()
    assert base_classifier.describe(return_dict=True) == {'name': 'Baseline Classifier', 'parameters': {'strategy': 'mode'}}
    assert base_regressor.describe(return_dict=True) == {'name': 'Baseline Regressor', 'parameters': {'strategy': 'mean'}}
    assert lr_classifier.describe(return_dict=True) == {'name': 'Logistic Regression Classifier', 'parameters': {'penalty': 'l2', 'C': 1.0, 'n_jobs': -1, 'multi_class': 'auto', 'solver': 'lbfgs'}}
    assert en_classifier.describe(return_dict=True) == {'name': 'Elastic Net Classifier', 'parameters': {'alpha': 0.5, 'l1_ratio': 0.5, 'n_jobs': -1, 'max_iter': 1000, "loss": 'log', 'penalty': 'elasticnet'}}
    assert en_regressor.describe(return_dict=True) == {'name': 'Elastic Net Regressor', 'parameters': {'alpha': 0.5, 'l1_ratio': 0.5, 'max_iter': 1000, 'normalize': False}}
    assert et_classifier.describe(return_dict=True) == {'name': 'Extra Trees Classifier', 'parameters': {'n_estimators': 10, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}
    assert et_regressor.describe(return_dict=True) == {'name': 'Extra Trees Regressor', 'parameters': {'n_estimators': 10, 'max_features': 'auto', 'max_depth': 6, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_jobs': -1}}
    assert rf_classifier.describe(return_dict=True) == {'name': 'Random Forest Classifier', 'parameters': {'n_estimators': 10, 'max_depth': 3, 'n_jobs': -1}}
    assert rf_regressor.describe(return_dict=True) == {'name': 'Random Forest Regressor', 'parameters': {'n_estimators': 10, 'max_depth': 3, 'n_jobs': -1}}
    assert linear_regressor.describe(return_dict=True) == {'name': 'Linear Regressor', 'parameters': {'fit_intercept': True, 'normalize': False, 'n_jobs': -1}}
    assert svm_classifier.describe(return_dict=True) == {'name': 'SVM Classifier', 'parameters': {'C': 1.0, 'kernel': 'rbf', 'gamma': 'scale', 'probability': True}}
    assert svm_regressor.describe(return_dict=True) == {'name': 'SVM Regressor', 'parameters': {'C': 1.0, 'kernel': 'rbf', 'gamma': 'scale'}}
    try:
        xgb_classifier = XGBoostClassifier(eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75)
        xgb_regressor = XGBoostRegressor(eta=0.1, min_child_weight=1, max_depth=3, n_estimators=75)
        assert xgb_classifier.describe(return_dict=True) == {'name': 'XGBoost Classifier', 'parameters': {'eta': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'n_estimators': 75}}
        assert xgb_regressor.describe(return_dict=True) == {'name': 'XGBoost Regressor', 'parameters': {'eta': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'n_estimators': 75}}
    except ImportError:
        pass
    try:
        cb_classifier = CatBoostClassifier()
        cb_regressor = CatBoostRegressor()
        assert cb_classifier.describe(return_dict=True) == {'name': 'CatBoost Classifier', 'parameters': {'allow_writing_files': False, 'n_estimators': 10, 'eta': 0.03, 'max_depth': 6, 'bootstrap_type': None, 'silent': True}}
        assert cb_regressor.describe(return_dict=True) == {'name': 'CatBoost Regressor', 'parameters': {'allow_writing_files': False, 'n_estimators': 10, 'eta': 0.03, 'max_depth': 6, 'bootstrap_type': None, 'silent': False}}
    except ImportError:
        pass
    try:
        lg_classifier = LightGBMClassifier()
        lg_regressor = LightGBMRegressor()
        assert lg_classifier.describe(return_dict=True) == {'name': 'LightGBM Classifier', 'parameters': {'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 100, 'max_depth': 0, 'num_leaves': 31,
                                                                                                          'min_child_samples': 20, 'n_jobs': -1, 'bagging_fraction': 0.9, 'bagging_freq': 0}}
        assert lg_regressor.describe(return_dict=True) == {'name': 'LightGBM Regressor', 'parameters': {'boosting_type': 'gbdt', 'learning_rate': 0.1, 'n_estimators': 20, 'max_depth': 0, 'num_leaves': 31,
                                                                                                        'min_child_samples': 20, 'n_jobs': -1, 'bagging_fraction': 0.9, 'bagging_freq': 0}}
    except ImportError:
        pass
예제 #5
0
def test_init():
    parameters = {"sampling_ratio": 1, "min_samples": 1, "min_percentage": 0.5}
    undersampler = Undersampler(**parameters)
    assert undersampler.parameters == parameters