'debugMode': False, # whether to record the debug info 'parallelMode': True # whether to leverage multiprocessing for speedup } initConfig(para) ######################################################### startTime = time.clock() # start timing logger.info('==============================================') logger.info('ADF: [Wu et al., TSMC\'2013].') # load the dataset dataMatrix = dataloader.load(para) logger.info('Loading data done.') # run for each density if para['parallelMode']: # run on multiple processes pool = multiprocessing.Pool() for density in para['density']: pool.apply_async(evaluator.execute, (dataMatrix, density, para)) pool.close() pool.join() else: # run on single processes for density in para['density']: evaluator.execute(dataMatrix, density, para) logger.info(time.strftime('All done. Total running time: %d-th day - %Hhour - %Mmin - %Ssec.', time.gmtime(time.clock() - startTime))) logger.info('==============================================') sys.path.remove('src')
startTime = time.clock() # start timing logger.info('==============================================') logger.info('Approach: HMF [He et al., ICWS\'2014].') # load the dataset dataMatrix = dataloader.load(para) logger.info('Loading data done.') # get the location groups for users as well as for services locGroup = dataloader.getLocGroup(para) logger.info('Clustering done.') # run for each density if para['parallelMode']: # run on multiple processes pool = multiprocessing.Pool() for density in para['density']: pool.apply_async(evaluator.execute, (dataMatrix, locGroup, density, para)) pool.close() pool.join() else: # run on single processes for density in para['density']: evaluator.execute(dataMatrix, locGroup, density, para) logger.info(time.strftime('All done. Total running time: %d-th day - %Hhour - %Mmin - %Ssec.', time.gmtime(time.clock() - startTime))) logger.info('==============================================') sys.path.remove('src')
'parallelMode': True # whether to leverage multiprocessing for speedup } initConfig(para) ######################################################### startTime = time.clock() # start timing logger.info('==============================================') logger.info('CLUS: [Silic et al., FSE\'2013].') # load the dataset dataTensor = dataloader.load(para) logger.info('Loading data done.') # run for each density if para['parallelMode']: # run on multiple processes pool = multiprocessing.Pool() for density in para['density']: pool.apply_async(evaluator.execute, (dataTensor, density, para)) pool.close() pool.join() else: # run on single processes for density in para['density']: evaluator.execute(dataTensor, density, para) logger.info( time.strftime( 'All done. Total running time: %d-th day - %Hhour - %Mmin - %Ssec.', time.gmtime(time.clock() - startTime))) logger.info('==============================================') sys.path.remove('src')
'parallelMode': True # whether to leverage multiprocessing for speedup } initConfig(para) ######################################################### startTime = time.clock() # start timing logger.info('==============================================') logger.info('NMF: Non-negative Matrix Factorization.') # load the dataset dataMatrix = dataloader.load(para) logger.info('Loading data done.') # run for each density if para['parallelMode']: # run on multiple processes pool = multiprocessing.Pool() for density in para['density']: pool.apply_async(evaluator.execute, (dataMatrix, density, para)) pool.close() pool.join() else: # run on single processes for density in para['density']: evaluator.execute(dataMatrix, density, para) logger.info( time.strftime( 'All done. Total running time: %d-th day - %Hhour - %Mmin - %Ssec.', time.gmtime(time.clock() - startTime))) logger.info('==============================================') sys.path.remove('src')
'outPath': 'result/', 'metrics': ['MAE', 'NMAE', 'RMSE', 'MRE', 'NPRE'], # delete where appropriate 'density': np.arange(0.05, 0.31, 0.05), # matrix density 'rounds': 20, # how many runs are performed at each matrix density 'dimension': 10, # dimenisionality of the latent factors 'etaInit': 0.001, # inital learning rate. We use line search # to find the best eta at each iteration 'lambda': 200, # regularization parameter 'maxIter': 300, # the max iterations 'saveTimeInfo': False, # whether to keep track of the running time 'saveLog': True, # whether to save log into file 'debugMode': False, # whether to record the debug info 'parallelMode': True # whether to leverage multiprocessing for speedup } startTime = time.time() # start timing utils.setConfig(para) # set configuration logger.info('==============================================') logger.info('PMF: Probabilistic Matrix Factorization') # load the dataset dataTensor = dataloader.load(para) # evaluate QoS prediction algorithm evaluator.execute(dataTensor, para) logger.info('All done. Elaspsed time: ' + utils.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')
# parameter config area para = {'dataPath': '../data/', # data path 'dataName': 'Orangelab_sense_temperature', # set the dataset name 'outPath': 'result/', # output path for results 'metrics': ['MAE', 'NMAE', 'RMSE', 'MRE', 'NNPRE', 'SNR'], # evaluation metrics 'samplingRate': np.arange(0.05, 0.96, 0.05), # sampling rate 'rounds': 1, # how many runs to perform at each sampling rate 'lmbda': 1e-5, # sparisty regularization parameter 'trainingPeriod': 33, # training time periods 'saveTimeInfo': False, # whether to keep track of the running time 'saveLog': False, # whether to save log into file 'debugMode': False, #whether to record the debug info 'parallelMode': False # whether to leverage multiprocessing for speedup } startTime = time.time() # start timing utils.setConfig(para) # set configuration logger.info('==============================================') logger.info('CS-PCA: [Quer et al., TWC\'2012]') # load the dataset dataMatrix = dataloader.load(para) # evaluate compressive monitoring algorithm evaluator.execute(dataMatrix, para) logger.info('All done. Elaspsed time: ' + utils.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')
startTime = time.clock() # start timing logger.info('==============================================') logger.info('Approach: LoRec [Chen et al, TPDS\'2014].') # load the dataset dataMatrix = dataloader.load(para) logger.info('Loading data done.') # get the inital user regions initUserRegion = dataloader.getInitalRegion(para) logger.info('Create initial user regions done.') # run for each density if para['parallelMode']: # run on multiple processes pool = multiprocessing.Pool() for density in para['density']: pool.apply_async(evaluator.execute, (dataMatrix, initUserRegion, density, para)) pool.close() pool.join() else: # run on single processes for density in para['density']: evaluator.execute(dataMatrix, initUserRegion, density, para) logger.info( time.strftime( 'All done. Total running time: %d-th day - %Hhour - %Mmin - %Ssec.', time.gmtime(time.clock() - startTime))) logger.info('==============================================') sys.path.remove('src')
'dataPath': '../../../data/', 'dataName': 'dataset#2', 'dataType': 'rt', # set the dataType as 'rt' or 'tp' 'outPath': 'result/', 'metrics': ['MAE', 'NMAE', 'RMSE', 'MRE', 'NPRE'], # delete where appropriate 'density': np.arange(0.05, 0.31, 0.05), # matrix density 'rounds': 20, # how many runs are performed at each matrix density 'topK': 10, # the parameter of TopK similar users or services 'lambda': 0.8, # the combination coefficient of UPCC and IPCC 'saveTimeInfo': False, # whether to keep track of the running time 'saveLog': True, # whether to save log into file 'debugMode': False, # whether to record the debug info 'parallelMode': True # whether to leverage multiprocessing for speedup } startTime = time.time() # start timing utils.setConfig(para) # set configuration logger.info('==============================================') logger.info('Approach: [UPCC, IPCC, UIPCC][TSC 2011]') # load the dataset dataTensor = dataloader.load(para) # evaluate QoS prediction algorithm evaluator.execute(dataTensor, para) logger.info('All done. Elaspsed time: ' + utils.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')
startTime = time.clock() # start timing logger.info("==============================================") logger.info("Approach: HMF [He et al., ICWS'2014].") # load the dataset dataMatrix = dataloader.load(para) logger.info("Loading data done.") # get the location groups for users as well as for services locGroup = dataloader.getLocGroup(para) logger.info("Clustering done.") # run for each density if para["parallelMode"]: # run on multiple processes pool = multiprocessing.Pool() for density in para["density"]: pool.apply_async(evaluator.execute, (dataMatrix, locGroup, density, para)) pool.close() pool.join() else: # run on single processes for density in para["density"]: evaluator.execute(dataMatrix, locGroup, density, para) logger.info( time.strftime( "All done. Total running time: %d-th day - %Hhour - %Mmin - %Ssec.", time.gmtime(time.clock() - startTime) ) ) logger.info("==============================================") sys.path.remove("src")
'outPath': 'result/', 'metrics': ['NDCG', 'Precision'], # delete where appropriate 'metric_parameter': [1, 5, 10, 50, 100], 'density': [0.01, 0.1, 0.3], # matrix density 'rounds': 10, # how many runs are performed at each matrix density 'dimension': 10, # dimenisionality of the latent factors 'etaInit': 0.01, # inital learning rate. We use line search # to find the best eta at each iteration 'lambda': 0.1, # regularization parameter 'maxIter': 300, # the max iterations 'saveTimeInfo': False, # whether to keep track of the running time 'saveLog': True, # whether to save log into file 'debugMode': False, # whether to record the debug info 'parallelMode': True # whether to leverage multiprocessing for speedup } startTime = time.time() # start timing utils.setConfig(para) # set configuration logger.info('==============================================') logger.info('PMF: Probabilistic Matrix Factorization') # load the dataset dataMatrix = dataloader.load(para) # evaluate QoS prediction algorithm evaluator.execute(dataMatrix, para) logger.info('All done. Elaspsed time: ' + utils.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')
initConfig(para) ######################################################### startTime = time.clock() # start timing logger.info('==============================================') logger.info('Approach: LN_LFM [Yu et al., SCC\'2014]') # load the dataset dataMatrix = dataloader.load(para) logger.info('Loading data done.') # load the service location information wsInfoList = dataloader.loadServInfo(para) logger.info('Loading service location information done.') # run for each density if para['parallelMode']: # run on multiple processes pool = multiprocessing.Pool() for density in para['density']: pool.apply_async(evaluator.execute, (dataMatrix, wsInfoList, density, para)) pool.close() pool.join() else: # run on single processes for density in para['density']: evaluator.execute(dataMatrix, wsInfoList, density, para) logger.info(time.strftime('All done. Total running time: %d-th day - %Hhour - %Mmin - %Ssec.', time.gmtime(time.clock() - startTime))) logger.info('==============================================') sys.path.remove('src')
######################################################### startTime = time.clock() # start timing logger.info('==============================================') logger.info('Approach: RegionKNN [Chen et al, ICWS\'2010].') # load the dataset dataMatrix = dataloader.load(para) logger.info('Loading data done.') # get the inital user regions initUserRegion = dataloader.getInitalRegion(para) logger.info('Create initial user regions done.') # run for each density if para['parallelMode']: # run on multiple processes pool = multiprocessing.Pool() for density in para['density']: pool.apply_async(evaluator.execute, (dataMatrix, initUserRegion, density, para)) pool.close() pool.join() else: # run on single processes for density in para['density']: evaluator.execute(dataMatrix, initUserRegion, density, para) logger.info(time.strftime('All done. Total running time: %d-th day - %Hhour - %Mmin - %Ssec.', time.gmtime(time.clock() - startTime))) logger.info('==============================================') sys.path.remove('src')
def execute(code): return evaluator.execute(parser.parser(tokenizer.tokenize(code)))
'debugMode': False, # whether to record the debug info 'parallelMode': True # whether to leverage multiprocessing for speedup } initConfig(para) ######################################################### startTime = time.clock() # start timing logger.info('==============================================') logger.info('Baseline approach.') # load the dataset dataTensor = dataloader.load(para) logger.info('Loading data done.') # run for each density if para['parallelMode']: # run on multiple processes pool = multiprocessing.Pool() for density in para['density']: pool.apply_async(evaluator.execute, (dataTensor, density, para)) pool.close() pool.join() else: # run on single processes for density in para['density']: evaluator.execute(dataTensor, density, para) logger.info(time.strftime('All done. Total running time: %d-th day - %Hhour - %Mmin - %Ssec.', time.gmtime(time.clock() - startTime))) logger.info('==============================================') sys.path.remove('src')
'rounds': 20, # how many runs are performed at each matrix density 'dimension': 10, # dimenisionality of the latent factors 'eta': 0.0001, # learning rate 'alpha': 0.6, # the combination coefficient 'lambda': 5, # regularization parameter 'maxIter': 300, # the max iterations 'saveTimeInfo': False, # whether to keep track of the running time 'saveLog': True, # whether to save log into file 'debugMode': False, # whether to record the debug info 'parallelMode': True # whether to leverage multiprocessing for speedup } startTime = time.time() # start timing utils.setConfig(para) # set configuration logger.info('==============================================') logger.info('LN-LFM: Latent Neighbor and Latent Factor Model') # load the dataset dataMatrix = dataloader.load(para) # load the service location information wsInfoList = dataloader.loadServInfo(para) # evaluate QoS prediction algorithm evaluator.execute(dataMatrix, wsInfoList, para) logger.info('All done. Elaspsed time: ' + utils.formatElapsedTime(time.time() - startTime)) # end timing logger.info('==============================================')