예제 #1
0
def run(args):
    import evo.common_ape_rpe as common
    from evo import EvoException
    from evo.core import sync
    from evo.tools import file_interface, log
    from evo.tools.settings import SETTINGS

    log.configure_logging(args.verbose, args.silent, args.debug,
                          local_logfile=args.logfile)
    if args.debug:
        from pprint import pformat
        parser_str = pformat({arg: getattr(args, arg) for arg in vars(args)})
        logger.debug("main_parser config:\n{}".format(parser_str))
    logger.debug(SEP)

    if (args.plot or args.save_plot or args.serialize_plot) and args.all_pairs:
        raise EvoException(
            "all_pairs mode cannot be used with plotting functions")

    traj_ref, traj_est, ref_name, est_name = common.load_trajectories(args)
    pose_relation = common.get_pose_relation(args)
    delta_unit = common.get_delta_unit(args)

    traj_ref_full = None
    if args.plot_full_ref:
        import copy
        traj_ref_full = copy.deepcopy(traj_ref)

    if args.subcommand != "kitti":
        logger.debug("Synchronizing trajectories...")
        traj_ref, traj_est = sync.associate_trajectories(
            traj_ref, traj_est, args.t_max_diff, args.t_offset,
            first_name=ref_name, snd_name=est_name)

    result = rpe(
        traj_ref=traj_ref,
        traj_est=traj_est,
        pose_relation=pose_relation,
        delta=args.delta,
        delta_unit=delta_unit,
        rel_delta_tol=args.delta_tol,
        all_pairs=args.all_pairs,
        align=args.align,
        correct_scale=args.correct_scale,
        align_origin=args.align_origin,
        ref_name=ref_name,
        est_name=est_name,
    )

    if args.plot or args.save_plot or args.serialize_plot:
        common.plot(args, result, traj_ref, result.trajectories[est_name],
                    traj_ref_full=traj_ref_full)

    if args.save_results:
        logger.debug(SEP)
        if not SETTINGS.save_traj_in_zip:
            del result.trajectories[ref_name]
            del result.trajectories[est_name]
        file_interface.save_res_file(args.save_results, result,
                                     confirm_overwrite=not args.no_warnings)
예제 #2
0
파일: main_ape.py 프로젝트: zaalsabb/evo
def run(args: argparse.Namespace) -> None:
    log.configure_logging(args.verbose,
                          args.silent,
                          args.debug,
                          local_logfile=args.logfile)
    if args.debug:
        from pprint import pformat
        parser_str = pformat({arg: getattr(args, arg) for arg in vars(args)})
        logger.debug("main_parser config:\n{}".format(parser_str))
    logger.debug(SEP)

    traj_ref, traj_est, ref_name, est_name = common.load_trajectories(args)

    traj_ref_full = None
    if args.plot_full_ref:
        import copy
        traj_ref_full = copy.deepcopy(traj_ref)

    if isinstance(traj_ref, PoseTrajectory3D) and isinstance(
            traj_est, PoseTrajectory3D):
        logger.debug("Synchronizing trajectories...")
        traj_ref, traj_est = sync.associate_trajectories(traj_ref,
                                                         traj_est,
                                                         args.t_max_diff,
                                                         args.t_offset,
                                                         first_name=ref_name,
                                                         snd_name=est_name)

    pose_relation = common.get_pose_relation(args)

    result = ape(
        traj_ref=traj_ref,
        traj_est=traj_est,
        pose_relation=pose_relation,
        align=args.align,
        correct_scale=args.correct_scale,
        n_to_align=args.n_to_align,
        align_origin=args.align_origin,
        ref_name=ref_name,
        est_name=est_name,
    )

    if args.plot or args.save_plot or args.serialize_plot:
        common.plot_result(args,
                           result,
                           traj_ref,
                           result.trajectories[est_name],
                           traj_ref_full=traj_ref_full)

    if args.save_results:
        logger.debug(SEP)
        if not SETTINGS.save_traj_in_zip:
            del result.trajectories[ref_name]
            del result.trajectories[est_name]
        file_interface.save_res_file(args.save_results,
                                     result,
                                     confirm_overwrite=not args.no_warnings)
예제 #3
0
 def test_write_read_integrity(self):
     result_out = Result()
     result_out.add_np_array("test-array", np.ones(1000))
     result_out.add_info({"name": "test", "number": 666})
     result_out.add_trajectory("traj", helpers.fake_trajectory(1000, 0.1))
     file_interface.save_res_file(self.mock_file, result_out)
     result_in = file_interface.load_res_file(self.mock_file,
                                              load_trajectories=True)
     self.assertEqual(result_in, result_out)
예제 #4
0
def run(args):
    import evo.common_ape_rpe as common
    from evo.tools import file_interface, log
    from evo.tools.settings import SETTINGS

    log.configure_logging(args.verbose,
                          args.silent,
                          args.debug,
                          local_logfile=args.logfile)
    if args.debug:
        from pprint import pformat
        parser_str = pformat({arg: getattr(args, arg) for arg in vars(args)})
        logger.debug("main_parser config:\n{}".format(parser_str))
    logger.debug(SEP)

    if (args.plot or args.save_plot or args.serialize_plot) and args.all_pairs:
        raise NotImplementedError(
            "all_pairs mode cannot be used with plotting functions")

    traj_ref, traj_est, ref_name, est_name = common.load_trajectories(args)
    pose_relation = common.get_pose_relation(args)
    delta_unit = common.get_delta_unit(args)

    result = rpe(
        traj_ref=traj_ref,
        traj_est=traj_est,
        pose_relation=pose_relation,
        delta=args.delta,
        delta_unit=delta_unit,
        rel_delta_tol=args.delta_tol,
        all_pairs=args.all_pairs,
        align=args.align,
        correct_scale=args.correct_scale,
        ref_name=ref_name,
        est_name=est_name,
    )

    if args.plot or args.save_plot or args.serialize_plot:
        common.plot(args, result, result.trajectories[ref_name],
                    result.trajectories[est_name])

    if args.save_results:
        logger.debug(SEP)
        if not SETTINGS.save_traj_in_zip:
            del result.trajectories[ref_name]
            del result.trajectories[est_name]
        file_interface.save_res_file(args.save_results,
                                     result,
                                     confirm_overwrite=not args.no_warnings)
예제 #5
0
파일: main_ape.py 프로젝트: xiehongle/evo
def run(args):
    import evo.common_ape_rpe as common
    from evo.tools import file_interface, log
    from evo.tools.settings import SETTINGS

    log.configure_logging(args.verbose,
                          args.silent,
                          args.debug,
                          local_logfile=args.logfile)
    if args.debug:
        from pprint import pformat
        parser_str = pformat({arg: getattr(args, arg) for arg in vars(args)})
        logger.debug("main_parser config:\n{}".format(parser_str))
    logger.debug(SEP)

    traj_ref, traj_est, ref_name, est_name = common.load_trajectories(args)
    pose_relation = common.get_pose_relation(args)

    result = ape(
        traj_ref=traj_ref,
        traj_est=traj_est,
        pose_relation=pose_relation,
        align=args.align,
        correct_scale=args.correct_scale,
        ref_name=ref_name,
        est_name=est_name,
    )

    if args.plot or args.save_plot or args.serialize_plot:
        common.plot(args, result, result.trajectories[ref_name],
                    result.trajectories[est_name])

    if args.save_results:
        logger.debug(SEP)
        if not SETTINGS.save_traj_in_zip:
            del result.trajectories[ref_name]
            del result.trajectories[est_name]
        file_interface.save_res_file(args.save_results,
                                     result,
                                     confirm_overwrite=not args.no_warnings)
예제 #6
0
파일: main_ape.py 프로젝트: danpeng2/evo
def run(args):
    import evo.common_ape_rpe as common
    from evo.tools import file_interface, log
    from evo.tools.settings import SETTINGS

    log.configure_logging(args.verbose, args.silent, args.debug)
    if args.debug:
        from pprint import pformat
        parser_str = pformat({arg: getattr(args, arg) for arg in vars(args)})
        logger.debug("main_parser config:\n{}".format(parser_str))
    logger.debug(SEP)

    traj_ref, traj_est, ref_name, est_name = common.load_trajectories(args)
    pose_relation = common.get_pose_relation(args)

    result = ape(
        traj_ref=traj_ref,
        traj_est=traj_est,
        pose_relation=pose_relation,
        align=args.align,
        correct_scale=args.correct_scale,
        ref_name=ref_name,
        est_name=est_name,
    )

    if args.plot or args.save_plot or args.serialize_plot:
        common.plot(
            args, result,
            result.trajectories[ref_name],
            result.trajectories[est_name])

    if args.save_results:
        logger.debug(SEP)
        if not SETTINGS.save_traj_in_zip:
            del result.trajectories[ref_name]
            del result.trajectories[est_name]
        file_interface.save_res_file(
            args.save_results, result, confirm_overwrite=not args.no_warnings)
예제 #7
0
파일: main_ape.py 프로젝트: skylook/evo
def main_ape(traj_ref,
             traj_est,
             pose_relation,
             align=True,
             correct_scale=False,
             ref_name="",
             est_name="",
             show_plot=False,
             save_plot=None,
             plot_mode=None,
             save_results=None,
             no_warnings=False,
             serialize_plot=None):

    from evo.algorithms import metrics
    from evo.algorithms import trajectory
    from evo.tools import file_interface
    from evo.tools.settings import SETTINGS

    only_scale = correct_scale and not align
    if align or correct_scale:
        logging.debug(SEP)
        if only_scale:
            logging.debug("correcting scale...")
        else:
            logging.debug("aligning using Umeyama's method..." + (
                " (with scale correction)" if correct_scale else ""))
        traj_est = trajectory.align_trajectory(traj_est, traj_ref,
                                               correct_scale, only_scale)
    logging.debug(SEP)

    # calculate APE
    data = (traj_ref, traj_est)
    ape_metric = metrics.APE(pose_relation)
    ape_metric.process_data(data)
    ape_statistics = ape_metric.get_all_statistics()

    title = str(ape_metric)
    if align and not correct_scale:
        title += "\n(with SE(3) Umeyama alignment)"
    elif align and correct_scale:
        title += "\n(with Sim(3) Umeyama alignment)"
    elif only_scale:
        title += "\n(scale corrected)"
    else:
        title += "\n(not aligned)"
    logging.debug(SEP)
    res_str = ""
    for name, val in sorted(ape_statistics.items()):
        res_str += "{:>10}".format(name) + "\t" + "{0:.6f}".format(val) + "\n"
    logging.info("\nstatistics of " + title + ":\n\n" + res_str)

    if show_plot or save_plot or save_results or serialize_plot:
        if isinstance(traj_est, trajectory.PoseTrajectory3D):
            seconds_from_start = [
                t - traj_est.timestamps[0] for t in traj_est.timestamps
            ]
        else:
            seconds_from_start = None

        if show_plot or save_plot or serialize_plot:
            from evo.tools import plot
            import matplotlib.pyplot as plt
            logging.debug(SEP)
            logging.debug("plotting results... ")
            fig1 = plt.figure(figsize=(SETTINGS.plot_figsize[0],
                                       SETTINGS.plot_figsize[1]))
            # metric values
            plot.error_array(
                fig1,
                ape_metric.error,
                x_array=seconds_from_start,
                statistics=ape_statistics,
                name="APE" + (" (" + ape_metric.unit.value + ")")
                if ape_metric.unit else "",
                title=title,
                xlabel="$t$ (s)" if seconds_from_start else "index")
            # info text
            if SETTINGS.plot_info_text and est_name and ref_name:
                ax = fig1.gca()
                ax.text(0,
                        -0.12,
                        "estimate:  " + est_name + "\nreference: " + ref_name,
                        transform=ax.transAxes,
                        fontsize=8,
                        color="gray")
            # trajectory colormapped
            fig2 = plt.figure(figsize=(SETTINGS.plot_figsize[0],
                                       SETTINGS.plot_figsize[1]))
            plot_mode = plot_mode if plot_mode is not None else plot.PlotMode.xyz
            ax = plot.prepare_axis(fig2, plot_mode)
            plot.traj(ax,
                      plot_mode,
                      traj_ref,
                      '--',
                      'gray',
                      'reference',
                      alpha=0.0 if SETTINGS.plot_hideref else 1.0)
            plot.traj_colormap(ax,
                               traj_est,
                               ape_metric.error,
                               plot_mode,
                               min_map=ape_statistics["min"],
                               max_map=ape_statistics["max"],
                               title="APE mapped onto trajectory")
            fig2.axes.append(ax)
            plot_collection = plot.PlotCollection(title)
            plot_collection.add_figure("raw", fig1)
            plot_collection.add_figure("map", fig2)
            if show_plot:
                plot_collection.show()
            if save_plot:
                plot_collection.export(save_plot,
                                       confirm_overwrite=not no_warnings)
            if serialize_plot:
                logging.debug(SEP)
                plot_collection.serialize(serialize_plot,
                                          confirm_overwrite=not no_warnings)

        if save_results:
            logging.debug(SEP)
            file_interface.save_res_file(save_results,
                                         ape_metric,
                                         ape_statistics,
                                         title,
                                         ref_name,
                                         est_name,
                                         seconds_from_start,
                                         traj_ref,
                                         traj_est,
                                         confirm_overwrite=not no_warnings)

    return ape_statistics, ape_metric.error
예제 #8
0
파일: main_ape.py 프로젝트: amberwood31/evo
def run(args: argparse.Namespace) -> None:
    print('using this main_ape')
    log.configure_logging(args.verbose,
                          args.silent,
                          args.debug,
                          local_logfile=args.logfile)
    if args.debug:
        from pprint import pformat
        parser_str = pformat({arg: getattr(args, arg) for arg in vars(args)})
        logger.debug("main_parser config:\n{}".format(parser_str))
    logger.debug(SEP)

    traj_ref, traj_est, ref_name, est_name = common.load_trajectories(args)

    traj_ref_full = None
    if args.plot_full_ref:
        import copy
        traj_ref_full = copy.deepcopy(traj_ref)

    if args.flip_xy:
        print("flip xy", args.flip_xy)
        flip_rotation = transformations.rotation_matrix(math.pi / 2, [0, 0, 1])
        print('transformation matrix,', flip_rotation)
        traj_est.transform_rotation_only(flip_rotation)

    if isinstance(traj_ref, PoseTrajectory3D) and isinstance(
            traj_est, PoseTrajectory3D):
        logger.debug(SEP)
        if args.t_start or args.t_end:
            if args.t_start:
                logger.info("Using time range start: {}s".format(args.t_start))
            if args.t_end:
                logger.info("Using time range end: {}s".format(args.t_end))
            traj_ref.reduce_to_time_range(args.t_start, args.t_end)
        logger.debug("Synchronizing trajectories...")
        traj_ref, traj_est = sync.associate_trajectories(traj_ref,
                                                         traj_est,
                                                         args.t_max_diff,
                                                         args.t_offset,
                                                         first_name=ref_name,
                                                         snd_name=est_name)

    pose_relation = common.get_pose_relation(args)

    print('align_odom: ', args.align_odom)
    result = ape(
        traj_ref=traj_ref,
        traj_est=traj_est,
        pose_relation=pose_relation,
        align=args.align,
        correct_scale=args.correct_scale,
        n_to_align=args.n_to_align,
        align_origin=args.align_origin,
        align_odom=args.align_odom,
        ref_name=ref_name,
        est_name=est_name,
    )

    if args.plot or args.save_plot or args.serialize_plot:
        common.plot_result(args,
                           result,
                           traj_ref,
                           result.trajectories[est_name],
                           traj_ref_full=traj_ref_full)

    if args.save_results:
        logger.debug(SEP)
        if not SETTINGS.save_traj_in_zip:
            del result.trajectories[ref_name]
            del result.trajectories[est_name]
        file_interface.save_res_file(args.save_results,
                                     result,
                                     confirm_overwrite=not args.no_warnings)
예제 #9
0
def main_rpe_for_each(traj_ref,
                      traj_est,
                      pose_relation,
                      mode,
                      bins,
                      rel_tols,
                      align=False,
                      correct_scale=False,
                      ref_name="",
                      est_name="",
                      show_plot=False,
                      save_plot=None,
                      save_results=None,
                      no_warnings=False,
                      serialize_plot=None):

    from evo.algorithms import metrics
    from evo.algorithms import filters
    from evo.algorithms import trajectory
    from evo.tools import file_interface
    from evo.tools.settings import SETTINGS

    if not bins or not rel_tols:
        raise RuntimeError(
            "bins and tolerances must have more than one element")
    if len(bins) != len(rel_tols):
        raise RuntimeError(
            "bins and tolerances must have the same number of elements")
    if mode in {"speed", "angular_speed"
                } and traj_est is trajectory.PosePath3D:
        raise RuntimeError("timestamps are required for mode: " + mode)

    bin_unit = None
    if mode == "speed":
        bin_unit = metrics.VelUnit.meters_per_sec
    elif mode == "path":
        bin_unit = metrics.Unit.meters
    elif mode == "angle":
        bin_unit = metrics.Unit.degrees
    elif mode == "angular_speed":
        bin_unit = metrics.VelUnit.degrees_per_sec

    rpe_unit = None
    if pose_relation is metrics.PoseRelation.translation_part:
        rpe_unit = metrics.Unit.meters
    elif pose_relation is metrics.PoseRelation.rotation_angle_deg:
        rpe_unit = metrics.Unit.degrees
    elif pose_relation is metrics.PoseRelation.rotation_angle_rad:
        rpe_unit = metrics.Unit.radians

    correct_only_scale = correct_scale and not align
    if align or correct_scale:
        logging.debug(SEP)
        if correct_only_scale:
            logging.debug("correcting scale...")
        else:
            logging.debug("aligning using Umeyama's method..." + (
                " (with scale correction)" if correct_scale else ""))
        traj_est = trajectory.align_trajectory(traj_est, traj_ref,
                                               correct_scale,
                                               correct_only_scale)

    results = []
    for bin, rel_tol, in zip(bins, rel_tols):
        logging.debug(SEP)
        logging.info("calculating RPE for each sub-sequence of " + str(bin) +
                     " (" + bin_unit.value + ")")

        tol = bin * rel_tol
        id_pairs = []
        if mode == "path":
            id_pairs = filters.filter_pairs_by_path(traj_ref.poses_se3,
                                                    bin,
                                                    tol,
                                                    all_pairs=True)
        elif mode == "angle":
            id_pairs = filters.filter_pairs_by_angle(traj_ref.poses_se3,
                                                     bin,
                                                     tol,
                                                     degrees=True)
        elif mode == "speed":
            id_pairs = filters.filter_pairs_by_speed(traj_ref.poses_se3,
                                                     traj_ref.timestamps, bin,
                                                     tol)
        elif mode == "angular_speed":
            id_pairs = filters.filter_pairs_by_angular_speed(
                traj_ref.poses_se3, traj_ref.timestamps, bin, tol, True)

        if len(id_pairs) == 0:
            raise RuntimeError("bin " + str(bin) + " (" + str(bin_unit.value) +
                               ") " +
                               "produced empty index list - try other values")

        # calculate RPE with all IDs (delta 1 frames)
        data = (traj_ref, traj_est)
        # the delta here has nothing to do with the bin - 1f delta just to use all poses of the bin
        rpe_metric = metrics.RPE(pose_relation,
                                 delta=1,
                                 delta_unit=metrics.Unit.frames,
                                 all_pairs=True)
        rpe_metric.process_data(data, id_pairs)
        mean = rpe_metric.get_statistic(metrics.StatisticsType.mean)
        results.append(mean)

    if SETTINGS.plot_usetex:
        mode.replace("_", "\_")
    title = "mean RPE w.r.t. " + pose_relation.value + "\nfor different " + mode + " sub-sequences"
    if align and not correct_scale:
        title += "\n(with SE(3) Umeyama alignment)"
    elif align and correct_scale:
        title += "\n(with Sim(3) Umeyama alignment)"
    elif correct_only_scale:
        title += "\n(scale corrected)"
    else:
        title += "\n(not aligned)"
    logging.debug(SEP)
    logging.info("\n" + title + "\n")
    res_str = ""
    for bin, result in zip(bins, results):
        res_str += "{:>10}".format(str(bin) + "(" + bin_unit.value + ")")
        res_str += "\t" + "{0:.6f}".format(result) + "\n"
    logging.info(res_str)

    if show_plot or save_plot or serialize_plot:
        from evo.tools import plot
        import matplotlib.pyplot as plt
        plot_collection = plot.PlotCollection(title)
        fig = plt.figure(figsize=(SETTINGS.plot_figsize[0],
                                  SETTINGS.plot_figsize[1]))
        plot.error_array(fig,
                         results,
                         x_array=bins,
                         name="mean RPE" +
                         (" (" + rpe_unit.value + ")") if rpe_unit else "",
                         marker="o",
                         title=title,
                         xlabel=mode + " sub-sequences " + " (" +
                         bin_unit.value + ")")
        # info text
        if SETTINGS.plot_info_text and est_name and ref_name:
            ax = fig.gca()
            ax.text(0,
                    -0.12,
                    "estimate:  " + est_name + "\nreference: " + ref_name,
                    transform=ax.transAxes,
                    fontsize=8,
                    color="gray")
        plt.title(title)
        plot_collection.add_figure("raw", fig)
        if show_plot:
            plot_collection.show()
        if save_plot:
            plot_collection.export(save_plot,
                                   confirm_overwrite=not no_warnings)
        if serialize_plot:
            logging.debug(SEP)
            plot_collection.serialize(serialize_plot,
                                      confirm_overwrite=not no_warnings)

    rpe_statistics = {bin: result for bin, result in zip(bins, results)}
    if save_results:
        logging.debug(SEP)

        # utility class to trick save_res_file
        class Metric:
            unit = rpe_unit
            error = results

        file_interface.save_res_file(save_results,
                                     Metric,
                                     rpe_statistics,
                                     title,
                                     ref_name,
                                     est_name,
                                     bins,
                                     traj_ref,
                                     traj_est,
                                     xlabel=mode + " sub-sequences " + " (" +
                                     bin_unit.value + ")",
                                     confirm_overwrite=not no_warnings)

    return rpe_statistics, results
예제 #10
0
        res.info["title"] = title
        res.info["est_name"] = est_name

        err_arr = []
        ts_arr = []

        for j in range(len(csv_data[i])):
            err_arr.append(csv_data[i][j][0])
            ts_arr.append(j)

        res.add_np_array("error_array", err_arr)
        res.add_np_array("timestamps", ts_arr)

        rmse_arr = []
        for j in range(len(csv_data[i])):
            rmse_arr.append(csv_data[i][j][2])

        statsdict = {
            "mean": mean(err_arr),
            "median": median(err_arr),
            "rmse": mean(rmse_arr)
        }

        res.add_stats(statsdict)

        save_path = args.save + est_name
        save_path = save_path[:-4] + ".zip"
        print("\nSaving consolidated results to:\n {}".format(save_path))

        evof.save_res_file(save_path, res)
예제 #11
0
def main(res_file, new_name):
    result = file_interface.load_res_file(res_file)
    result.info["est_name"] = new_name
    file_interface.save_res_file(res_file, result)
예제 #12
0
def main_rpe(traj_ref,
             traj_est,
             pose_relation,
             delta,
             delta_unit,
             rel_delta_tol=0.1,
             all_pairs=False,
             align=False,
             correct_scale=False,
             ref_name="",
             est_name="",
             show_plot=False,
             save_plot=None,
             plot_mode=None,
             save_results=None,
             no_warnings=False,
             support_loop=False,
             serialize_plot=None):

    from evo.core import metrics, result
    from evo.core import trajectory
    from evo.tools import file_interface
    from evo.tools.settings import SETTINGS

    if (show_plot or save_plot or serialize_plot) and all_pairs:
        raise metrics.MetricsException(
            "all_pairs mode cannot be used with plotting functions")

    only_scale = correct_scale and not align
    if align or correct_scale:
        logging.debug(SEP)
        if only_scale:
            logging.debug("correcting scale...")
        else:
            logging.debug("aligning using Umeyama's method..." + (
                " (with scale correction)" if correct_scale else ""))
        traj_est = trajectory.align_trajectory(traj_est, traj_ref,
                                               correct_scale, only_scale)
    logging.debug(SEP)

    # calculate RPE
    data = (traj_ref, traj_est)
    rpe_metric = metrics.RPE(pose_relation, delta, delta_unit, rel_delta_tol,
                             all_pairs)
    rpe_metric.process_data(data)
    rpe_statistics = rpe_metric.get_all_statistics()

    title = str(rpe_metric)
    if align and not correct_scale:
        title += "\n(with SE(3) Umeyama alignment)"
    elif align and correct_scale:
        title += "\n(with Sim(3) Umeyama alignment)"
    elif only_scale:
        title += "\n(scale corrected)"
    else:
        title += "\n(not aligned)"

    rpe_result = result.from_metric(rpe_metric, title, ref_name, est_name)
    logging.debug(SEP)
    logging.info(rpe_result.pretty_str())

    # restrict trajectories to delta ids
    if support_loop:
        # avoid overwriting if called repeatedly e.g. in Jupyter notebook
        import copy
        traj_ref = copy.deepcopy(traj_ref)
        traj_est = copy.deepcopy(traj_est)
    traj_ref.reduce_to_ids(rpe_metric.delta_ids)
    traj_est.reduce_to_ids(rpe_metric.delta_ids)
    if isinstance(traj_est, trajectory.PoseTrajectory3D) and not all_pairs:
        seconds_from_start = [
            t - traj_est.timestamps[0] for t in traj_est.timestamps
        ]
        rpe_result.add_np_array("seconds_from_start", seconds_from_start)
    else:
        seconds_from_start = None

    if show_plot or save_plot or serialize_plot and not all_pairs:
        from evo.tools import plot
        import matplotlib.pyplot as plt
        logging.debug(SEP)
        logging.debug("plotting results... ")
        fig1 = plt.figure(figsize=(SETTINGS.plot_figsize[0],
                                   SETTINGS.plot_figsize[1]))
        # metric values
        plot.error_array(
            fig1,
            rpe_metric.error,
            x_array=seconds_from_start,
            statistics=rpe_statistics,
            name="RPE" +
            (" (" + rpe_metric.unit.value + ")") if rpe_metric.unit else "",
            title=title,
            xlabel="$t$ (s)" if seconds_from_start else "index")
        # info text
        if SETTINGS.plot_info_text and est_name and ref_name:
            ax = fig1.gca()
            ax.text(0,
                    -0.12,
                    "estimate:  " + est_name + "\nreference: " + ref_name,
                    transform=ax.transAxes,
                    fontsize=8,
                    color="gray")
        # trajectory colormapped
        fig2 = plt.figure(figsize=(SETTINGS.plot_figsize[0],
                                   SETTINGS.plot_figsize[1]))
        plot_mode = plot_mode if plot_mode is not None else plot.PlotMode.xyz
        ax = plot.prepare_axis(fig2, plot_mode)
        plot.traj(ax,
                  plot_mode,
                  traj_ref,
                  '--',
                  'gray',
                  'reference',
                  alpha=0 if SETTINGS.plot_hideref else 1)
        plot.traj_colormap(ax,
                           traj_est,
                           rpe_metric.error,
                           plot_mode,
                           min_map=rpe_statistics["min"],
                           max_map=rpe_statistics["max"],
                           title="RPE mapped onto trajectory")
        fig2.axes.append(ax)
        plot_collection = plot.PlotCollection(title)
        plot_collection.add_figure("raw", fig1)
        plot_collection.add_figure("map", fig2)
        if show_plot:
            plot_collection.show()
        if save_plot:
            plot_collection.export(save_plot,
                                   confirm_overwrite=not no_warnings)
        if serialize_plot:
            logging.debug(SEP)
            plot_collection.serialize(serialize_plot,
                                      confirm_overwrite=not no_warnings)

    if save_results:
        logging.debug(SEP)
        if SETTINGS.save_traj_in_zip:
            rpe_result.add_trajectory("traj_ref", traj_ref)
            rpe_result.add_trajectory("traj_est", traj_est)
        file_interface.save_res_file(save_results,
                                     rpe_result,
                                     confirm_overwrite=not no_warnings)

    return rpe_result
예제 #13
0
# print(loc_tra)

results = []
odom_result = ape(
    traj_ref=mocap,
    traj_est=odom,
    pose_relation=metrics.PoseRelation.translation_part,
    align=False,
    correct_scale=False,
    align_origin=True,
    ref_name="mocap",
    est_name="odom",
)
results.append(odom_result)
file_interface.save_res_file("/home/kostas/results/res_files/odom",
                             odom_result,
                             confirm_overwrite=False)

slam_result = ape(
    traj_ref=mocap,
    traj_est=slam,
    pose_relation=metrics.PoseRelation.translation_part,
    align=False,
    correct_scale=False,
    align_origin=True,
    ref_name="mocap",
    est_name="slam",
)
results.append(slam_result)
file_interface.save_res_file("/home/kostas/results/res_files/slam",
                             slam_result,