예제 #1
0
    def call(self, population):
        """ Create the mask use to generate mutations

        Args:
            population_shape (list): population tensor shape.
        Returns:
            tensor: mask

        Generation works by:
        1. creating a slice that contains the mutation
        2. Inserting it into the mask
        3. Shuffle the mask in every dimension to distribute them
        """
        affected_population = int(population.shape[0] *
                                  self.population_fraction)

        # Build sub tensors & slices by iterating through tensor dimensions
        sub_tensor_shape = [affected_population]
        slices = [slice(0, affected_population)]
        for idx, pop_size in enumerate(population.shape[1:]):
            midx = idx - 1  # recall dim1 are genes.
            max_genes = int(pop_size * self.mutations_probability[midx] + 1)
            num_genes = B.randint(1, high=max_genes)
            sub_tensor_shape.append(num_genes)
            slices.append(slice(0, num_genes))
        slices = tuple(slices)
        tslices = slices2array(slices)
        self.print_debug("sub_tensor_shape", sub_tensor_shape)

        # drawing mutations
        mutations = B.randint(self.min_mutation_value,
                              self.max_mutation_value + 1,
                              shape=sub_tensor_shape)
        # blank mask
        mask = B.zeros(population.shape, dtype=mutations.dtype)

        # add mutations
        # print('mtuation', mutations.dtype)
        # print('mask', mask.dtype)
        mask = B.assign(mask, mutations, tslices)

        # shuffle mask every axis
        mask = B.full_shuffle(mask)

        # mutate
        population = population + mask

        # normalize
        if self.max_gene_value or self.min_gene_value:
            self.print_debug("min_gen_val", self.min_gene_value)
            self.print_debug("max_gen_val", self.max_gene_value)

            population = B.clip(population,
                                min_val=self.min_gene_value,
                                max_val=self.max_gene_value)
        return population
예제 #2
0
    def call(self, population):

        if not self.debug:
            population = B.shuffle(population)

        # how many chromosomes to crossover
        num_reversed_chromosomes = int(population.shape[0] *
                                       self.population_fraction)

        self.print_debug('num chromosomes', num_reversed_chromosomes)

        # compute the shape needed for the mutation
        mutations_shape = [num_reversed_chromosomes]
        for idx, frac in enumerate(self.max_reverse_probability):
            max_genes = int(population.shape[idx + 1] * frac + 1)
            # ! not an error: reverse need at least 2 indices to make sense.
            if max_genes > 2:
                num_genes = B.randint(2, high=max_genes)
            else:
                num_genes = 2
            mutations_shape.append(num_genes)
            self.print_debug(idx, 'num_genes', num_genes, 'max', max_genes)

        self.print_debug("population_shape:", population.shape)
        self.print_debug("mutation_shape:", mutations_shape)

        # compute the fancy indexing dynamlically
        # ! the start point must be randomized
        slices = [slice(0, num_reversed_chromosomes)]
        for idx, crossover_size in enumerate(mutations_shape[1:]):
            # ! making indexing explicit as its a huge pitfall
            mutation_dim = idx + 1
            max_start = population.shape[mutation_dim] - crossover_size + 1
            start = B.randint(0, max_start)
            # start = random.randint(0, max_start)
            slices.append(slice(start, crossover_size + start))
        slices = tuple(slices)
        tslices = slices2array(slices)
        self.print_debug('slices', slices)

        # revesing
        reversed_population = population[slices]
        axis = B.tensor([x for x in range(1, len(reversed_population.shape))])
        reversed_population = B.reverse(reversed_population, axis)
        self.print_debug('reversed population', reversed_population)

        # assigning
        population = B.assign(population, reversed_population, tslices)

        return population
예제 #3
0
def test_crossover1D_output_shape():
    POPULATION_SHAPE = (8, 6)
    population = B.randint(0, 1024, POPULATION_SHAPE)
    population_fraction = 0.5
    mutations_probability = 0.2

    original_population = copy(population)
    population = DualCrossover1D(population_fraction,
                                 mutations_probability,
                                 debug=True)(population)

    cprint(population, 'cyan')
    cprint(original_population, 'yellow')

    assert population.shape == POPULATION_SHAPE
    # measuring mutation rate
    diff = B.clip(abs(population - original_population), 0, 1)

    # row test
    num_ones_in_row = 0
    for col in diff:
        num_ones_in_row = max(list(col).count(1), num_ones_in_row)

    max_one_in_row = int(POPULATION_SHAPE[1] * mutations_probability)
    assert num_ones_in_row == max_one_in_row
    assert num_ones_in_row
예제 #4
0
def test_ND():
    "test various tensor size random"

    TEST_INPUTS = [
        [UniformCrossover1D, (2, 4), 0.5],
        [UniformCrossover2D, (2, 4, 4), (0.5, 0.5)],
        [UniformCrossover3D, (2, 4, 4, 4), (0.5, 0.5, 0.5)],
    ]

    for inputs in TEST_INPUTS:
        OP = inputs[0]
        pop_shape = inputs[1]
        mutations_probability = inputs[2]
        population_fraction = 1
        population = B.randint(0, 1024, pop_shape)

        # eager
        RM = OP(population_fraction=population_fraction,
                mutations_probability=mutations_probability)

        population = RM(population)
        assert B.is_tensor(population)
        assert population.shape == pop_shape

        # graph
        RM = OP(population_fraction=population_fraction,
                mutations_probability=mutations_probability)

        population = RM._call_from_graph(population)
        assert B.is_tensor(population)
        assert population.shape == pop_shape
예제 #5
0
def test_uniform_distribution():
    """check that every gene of the tensor are going to be flipped equally
    Note:
    # ! We need enough iterations and chromosomes to reduce collision
    # ! and ensure numerical stability
    """

    NUM_ITERATIONS = 300
    GENOME_SHAPE = (20, 4, 4)
    population = B.randint(0, 1024, GENOME_SHAPE)
    population_fraction = 1
    crossover_probability = (0.5, 0.5)

    OP = RandomMutations2D(population_fraction, crossover_probability)

    # diff matrix
    previous_population = B.copy(population)
    population = OP(population)
    diff = B.clip(abs(population - previous_population), 0, 1)
    for _ in range(NUM_ITERATIONS - 1):
        previous_population = B.copy(population)
        population = OP(population)

        curr_diff = B.clip(abs(population - previous_population), 0, 1)
        # acumulating diff matrix
        diff += curr_diff

    print(curr_diff)

    for c in diff:
        print(c)
        print('mean', B.mean(c), 'min', B.min(c), 'max', B.max(c))
        assert B.min(c) > NUM_ITERATIONS // 15
        assert B.max(c) < NUM_ITERATIONS // 2
        assert NUM_ITERATIONS // 8 < B.mean(c) < NUM_ITERATIONS // 2
예제 #6
0
    def call(self, population):

        # mix genomes
        shuffled_population = B.copy(population)
        shuffled_population = B.shuffle(shuffled_population)

        # how many chromosomes to crossover
        num_crossovers = int(population.shape[0] * self.population_fraction)
        self.print_debug('num_crossovers', num_crossovers)

        # compute the shape needed for the mutation
        mutations_shape = [num_crossovers]
        for idx, frac in enumerate(self.max_crossover_probability):
            max_genes = int(population.shape[idx + 1] * frac + 1)
            if max_genes > 1:
                num_genes = B.randint(1, high=max_genes)
            else:
                num_genes = 1
            mutations_shape.append(num_genes)
        self.print_debug("mutation_shape: %s" % mutations_shape)

        slices = []
        for crossover_size in mutations_shape:
            slices.append(slice(0, crossover_size))
        slices = tuple(slices)
        tslices = slices2array(slices)
        self.print_debug('slices', slices)

        # crossover
        cross_section = shuffled_population[slices]
        population = B.assign(population, cross_section, tslices)

        return population
예제 #7
0
def test_max_gene_val_2d():
    MAX_VAL = 10
    t = B.randint(0, MAX_VAL + 1, (10, 10, 10))
    max_sum_value = MAX_VAL * 10 * 10
    v = Sum(max_sum_value=max_sum_value).call(t)
    assert v.shape == (10, )
    for t in v:
        assert t < 1
예제 #8
0
    def call(self, population):

        # mix genomes
        shuffled_population = B.copy(population)
        shuffled_population = B.shuffle(shuffled_population)

        # how many chromosomes to crossover
        num_crossover_chromosomes = int(population.shape[0] *
                                        self.population_fraction)
        self.print_debug('num chromosomes', num_crossover_chromosomes)

        # compute the shape needed for the mutation
        mutations_shape = [num_crossover_chromosomes]
        for idx, frac in enumerate(self.max_crossover_probability):
            max_genes = int(population.shape[idx + 1] * frac + 1)
            if max_genes > 1:
                num_genes = B.randint(1, high=max_genes)
            else:
                num_genes = 1
            mutations_shape.append(num_genes)
        mutations_shape = mutations_shape
        self.print_debug("population_shape:", population.shape)
        self.print_debug("mutation_shape:", mutations_shape)

        # compute the fancy indexing dynamlically
        # ! the start point must be randomized
        slices = [slice(0, num_crossover_chromosomes)]
        for idx, crossover_size in enumerate(mutations_shape[1:]):
            # ! making indexing explicit as its a huge pitfall
            mutation_dim = idx + 1
            max_start = population.shape[mutation_dim] - crossover_size + 1
            start = B.randint(0, max_start)
            slices.append(slice(start, crossover_size + start))
        slices = tuple(slices)
        tslices = slices2array(slices)
        self.print_debug('slices', slices)

        # crossover
        cross_section = shuffled_population[slices]
        population = B.assign(population, cross_section, tslices)

        return population
예제 #9
0
    def call(self, population):

        # mix genomes
        population_copy = B.copy(population)
        population_copy = B.shuffle(population_copy)

        # how many chromosomes to crossover?
        num_crossovers = int(population.shape[0] * self.population_fraction)
        self.print_debug("population size %s" % population.shape[0])
        self.print_debug("num_crossovers %s" % num_crossovers)

        # crossover matrix
        x_matrix = B.zeros(population.shape, dtype=population.dtype)
        self.print_debug("Creating x_matrix and mutation_matrix")

        # We need to accounting for the fact that the population
        # can be of rank N which makes the fancy indexing painful.
        # we need a shape for the mutation which is this:
        # [num_crossover, num_mutation, ..., num_mutations]
        mutations_shape = [num_crossovers]
        for idx, frac in enumerate(self.max_crossover_probability):
            max_genes = int(population.shape[idx + 1] * frac + 1)
            if max_genes > 1:
                num_genes = B.randint(1, high=max_genes)
            else:
                num_genes = max_genes
            mutations_shape.append(num_genes)
        self.print_debug("mutation_shape: %s" % mutations_shape)

        # create tensor
        mutations = B.ones(mutations_shape, dtype=population.dtype)

        # compute the fancy indexing dynamically
        slices = []
        for size in mutations_shape:
            slices.append(slice(0, size))
        slices = tuple(slices)
        tslices = slices2array(slices)

        # injecting mutations
        x_matrix = B.assign(x_matrix, mutations, tslices)
        x_matrix = B.full_shuffle(x_matrix)

        # invert crossover matrix
        inv_x_matrix = B.abs((x_matrix) - 1)

        # copy chromosomes that stays the same
        population = population * inv_x_matrix

        # add the mutations
        population += (population_copy * x_matrix)

        return population
예제 #10
0
def test_cosine_2d(backends):
    INSERTION_POINTS = [0, 10, 20]  # where we copy the ref chromosome

    ref_chromosome = B.randint(0, 2, (32, 32))
    ref_pop = B.randint(0, 2, (64, 32, 32))

    ref_pop = B.as_numpy_array(ref_pop)
    inserstion = B.as_numpy_array(ref_chromosome)
    for idx in INSERTION_POINTS:
        ref_pop[idx] = inserstion

    ref_pop = B.tensor(ref_pop)

    cs = InvertedCosineSimilarity(ref_chromosome)
    distances = cs(ref_pop)
    print(distances)

    for idx, dst in enumerate(distances):
        if idx in INSERTION_POINTS:
            assert B.assert_near(dst, 1.0, absolute_tolerance=0.001)
        else:
            assert dst < 1
            assert dst > 0
예제 #11
0
def randint_population(shape, max_value, min_value=0):
    """Generate a random  population made of Integers

    Args:
        (set of ints): shape of the population. Its of the form
        (num_chromosomes, chromosome_dim_1, .... chromesome_dim_n)

        max_value (int): Maximum value taken by a given gene.

        min_value (int, optional): Min value a gene can take. Defaults to 0.

    Returns:
        Tensor: random population.
    """
    high = max_value + 1
    return B.randint(low=min_value, high=high, shape=shape, dtype=B.intx())
예제 #12
0
def test_1D_shape():
    POPULATION_SHAPE = (64, 16)
    population = B.randint(0, 1024, POPULATION_SHAPE)
    population_fraction = 0.5
    crossover_size_fraction = 0.2

    original_population = copy(population)
    population = SingleCrossover1D(population_fraction,
                                   crossover_size_fraction,
                                   debug=1)(population)

    cprint(population, 'cyan')
    cprint(original_population, 'yellow')

    assert population.shape == POPULATION_SHAPE
    # measuring mutation rate
    diff = B.clip(abs(population - original_population), 0, 1)
    cprint('diff', 'cyan')
    cprint(diff, 'cyan')

    # row test
    num_ones_in_row = 0
    for col in diff:
        num_ones = list(col).count(1)
        num_ones_in_row = max(num_ones, num_ones_in_row)

    max_one_in_row = POPULATION_SHAPE[1] * crossover_size_fraction
    assert num_ones_in_row <= max_one_in_row
    assert num_ones_in_row

    # col
    diff = B.transpose(diff)
    num_ones_in_col = 0
    for col in diff:
        num_ones_in_col = max(list(col).count(1), num_ones_in_col)

    max_one_in_col = POPULATION_SHAPE[0] * population_fraction
    assert max_one_in_col - 3 <= num_ones_in_col <= max_one_in_col
예제 #13
0
def test_mutation2d_graph_mode():
    "make sure the boxing / unboxing works in graph mode"
    pop_shape = (2, 4, 4)
    max_gene_value = 10
    min_gene_value = 0
    population_fraction = 1
    mutations_probability = (0.5, 0.5)
    min_mutation_value = 1
    max_mutation_value = 1

    population = B.randint(0, max_gene_value, pop_shape)

    RM = RandomMutations2D(population_fraction=population_fraction,
                           mutations_probability=mutations_probability,
                           min_gene_value=min_gene_value,
                           max_gene_value=max_gene_value,
                           min_mutation_value=min_mutation_value,
                           max_mutation_value=max_mutation_value,
                           debug=True)

    population = RM._call_from_graph(population)
    assert B.is_tensor(population)
    assert population.shape == pop_shape
예제 #14
0
def test_uniform_2Dcrossover_randomness_shape():
    GENOME_SHAPE = (10, 4, 4)
    population = B.randint(0, 1024, GENOME_SHAPE)
    population_fraction = 0.5
    crossover_probability = (0.5, 0.5)

    original_population = copy(population)
    OP = UniformCrossover2D(population_fraction, crossover_probability)
    population = OP(population)

    diff = B.clip(abs(population - original_population), 0, 1)
    print(diff)
    expected_mutations = original_population.shape[0] * population_fraction

    mutated_chromosomes = []
    for c in diff:
        if B.max(c):
            mutated_chromosomes.append(c)
    num_mutations = len(mutated_chromosomes)

    # sometime we have a collision so we use a delta
    assert abs(num_mutations - expected_mutations) < 2

    mutated_rows = crossover_probability[0] * GENOME_SHAPE[1]
    mutated_cells = crossover_probability[0] * GENOME_SHAPE[2]
    for cidx, c in enumerate(mutated_chromosomes):
        mr = 0.0
        mc = 0.0
        for r in c:
            s = B.cast(B.sum(r), B.floatx())
            if s:
                mr += 1
                mc += s

        assert abs(mutated_rows - mr) <= 2
        assert abs(B.cast(mutated_cells, B.floatx()) -
                   (mc / mutated_rows)) <= 3.0  # 2.5
예제 #15
0
                             **kwargs)


if __name__ == '__main__':
    from copy import copy
    from evoflow.utils import op_optimization_benchmark
    NUM_RUNS = 10
    pop_shape = (100, 100, 10)
    max_gene_value = 10
    min_gene_value = 0
    population_fraction = 1
    mutations_probability = (0.5, 0.5)
    min_mutation_value = 1
    max_mutation_value = 1

    population = B.randint(0, max_gene_value, pop_shape)

    OP = RandomMutations2D(
        population_fraction=population_fraction,
        mutations_probability=mutations_probability,
        min_gene_value=min_gene_value,
        max_gene_value=max_gene_value,
        min_mutation_value=min_mutation_value,
        max_mutation_value=max_mutation_value,
    )
    op_optimization_benchmark(population, OP, NUM_RUNS).report()
    quit()
    # display
    pop_shape = (6, 4, 4)
    max_gene_value = 10
    min_gene_value = 0
예제 #16
0
        super(Reverse3D,
              self).__init__(population_fraction=population_fraction,
                             max_reverse_probability=max_reverse_probability,
                             **kwargs)


if __name__ == '__main__':
    from copy import copy
    from termcolor import cprint
    from evoflow.utils import op_optimization_benchmark

    NUM_RUNS = 3  # 100
    # pop_shape = (100, 100, 100)
    pop_shape = (100, 100, 100)
    population = B.randint(0, 256, pop_shape)
    population_fraction = 0.5
    max_reverse_probability = (0.5, 0.5)

    OP = Reverse2D(population_fraction, max_reverse_probability)
    op_optimization_benchmark(population, OP, NUM_RUNS).report()
    quit()

    GENOME_SHAPE = (6, 4)
    population = B.randint(0, 256, GENOME_SHAPE)
    population_fraction = 0.5
    max_reverse_probability = 0.5
    cprint(population, 'green')
    original_population = copy(population)
    # ! population will be shuffle if not debug
    population = Reverse1D(population_fraction,
예제 #17
0
def test_call_vs_get():
    shape = (128, 64)
    population = B.randint(1, 10, shape=shape)
    inputs = Input(shape)
    inputs.assign(population)
    assert B.tensor_equal(inputs.get(), inputs.call(''))
예제 #18
0
def test_2d():
    shape = (128, 64, 64)
    population = B.randint(1, 10, shape=shape)
    inputs = Input(shape)
    inputs.assign(population)
    assert B.tensor_equal(inputs.get(), population)