sklearn_cv = SVCCVSkGridLinear(\ C_range = [2 ** i for i in range(-5, 5, 2)], cv_method = KFold(20, 5)) meta_model = DSESSVCLinearMetaModel(\ window_size = 10, scaling = ScalingStandardscore(), crossvalidation = sklearn_cv, repair_mode = 'mirror') method = ORIDSESAlignedSVC(\ mu = 15, lambd = 100, theta = 0.3, pi = 70, initial_sigma = matrix([[4.5, 4.5]]), delta = 4.5, tau0 = 0.5, tau1 = 0.6, initial_pos = matrix([[10.0, 10.0]]), beta = 0.9, meta_model = meta_model) return method if __name__ == "__main__": problem = TRProblem() optfit = problem.optimum_fitness() sim = Simulator(get_method(), problem, Accuracy(optfit, 10**(-6))) results = sim.simulate()
''' from sys import path path.append("../../../..") from numpy import matrix from evopy.strategies.ori_dses import ORIDSES from evopy.problems.tr_problem import TRProblem from evopy.simulators.simulator import Simulator from evopy.operators.termination.accuracy import Accuracy def get_method(): method = ORIDSES(\ mu = 15, lambd = 100, theta = 0.3, pi = 70, initial_sigma = matrix([[4.5, 4.5]]), delta = 4.5, tau0 = 0.5, tau1 = 0.6, initial_pos = matrix([[10.0, 10.0]])) return method if __name__ == "__main__": problem = TRProblem() termination = Accuracy(problem.optimum_fitness(), pow(10, -6)) sim = Simulator(get_method(), problem, termination) results = sim.simulate()