def classify_with_archive(archive, image_files, use_gpu=True): """ """ tmpdir = unzip_archive(archive) caffemodel = None deploy_file = None mean_file = None labels_file = None for filename in os.listdir(tmpdir): full_path = os.path.join(tmpdir, filename) if filename.endswith('.caffemodel'): caffemodel = full_path elif filename == 'deploy.prototxt': deploy_file = full_path elif filename.endswith('.binaryproto'): mean_file = full_path elif filename == 'labels.txt': labels_file = full_path else: print 'Unknown file:', filename assert caffemodel is not None, 'Caffe model file not found' assert deploy_file is not None, 'Deploy file not found' classify(caffemodel, deploy_file, image_files, mean_file=mean_file, labels_file=labels_file, use_gpu=use_gpu)
def classify_with_archive(archive, image_files, batch_size=None, use_gpu=True): """ """ tmpdir = unzip_archive(archive) caffemodel = None deploy_file = None mean_file = None labels_file = None for filename in os.listdir(tmpdir): full_path = os.path.join(tmpdir, filename) if filename.endswith('.caffemodel'): caffemodel = full_path elif filename == 'deploy.prototxt': deploy_file = full_path elif filename.endswith('.binaryproto'): mean_file = full_path elif filename == 'labels.txt': labels_file = full_path else: print('Unknown file:', filename) assert caffemodel is not None, 'Caffe model file not found' assert deploy_file is not None, 'Deploy file not found' classify(caffemodel, deploy_file, image_files, mean_file=mean_file, labels_file=labels_file, batch_size=batch_size, use_gpu=use_gpu)
def classify_image(image_files, use_gpu=True): caffemodel = '../caffe/20151207-223900-80d9_epoch_30.0/snapshot_iter_19140.caffemodel' deploy_file = '../caffe/20151207-223900-80d9_epoch_30.0/deploy.prototxt' mean_file = '../caffe/20151207-223900-80d9_epoch_30.0/mean.binaryproto' labels_file = '../caffe/20151207-223900-80d9_epoch_30.0/labels.txt' classify(caffemodel, deploy_file, image_files, mean_file=mean_file, labels_file=labels_file, use_gpu=use_gpu)
def classify_with_archive(archive, image_files, batch_size=None, use_gpu=True): """ """ tmpdir = unzip_archive(archive) caffemodel = None deploy_file = None mean_file = None labels_file = None for filename in os.listdir(tmpdir): full_path = os.path.join(tmpdir, filename) if filename.endswith('.caffemodel'): caffemodel = full_path elif filename == 'deploy.prototxt': deploy_file = full_path elif filename.endswith('.binaryproto'): mean_file = full_path elif filename == 'labels.txt': labels_file = full_path else: print 'Unknown file:', filename assert caffemodel is not None, 'Caffe model file not found' assert deploy_file is not None, 'Deploy file not found' class_labels = classify(caffemodel, deploy_file, image_files, mean_file=mean_file, labels_file=labels_file, batch_size=batch_size, use_gpu=use_gpu) with open('result.csv', 'wb') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) wr.writerow(class_labels)
def main(): drone = ps_drone.Drone() drone.reset() i=0 while (True): cap = misc.face() number=validation.classify("test/snapshot_iter_21120.caffemodel", "test/deploy.prototxt", cap, "test/mean.binaryproto", "test/labels.txt") print number time.sleep(0.5) i=i+1 if i>10: exit()
def classify_archive(): archive = '/home/user/Desktop/Run_DIGITS_Locally/INSIDEv4.tar.gz' image_file = ['/home/user/Desktop/Run_DIGITS_Locally/tst.png'] batch_size = None use_gpu = True tmpdir = unzip_archive(archive) caffemodel = None deploy_file = None mean_file = None labels_file = None for filename in os.listdir(tmpdir): full_path = os.path.join(tmpdir, filename) if filename.endswith('.caffemodel'): caffemodel = full_path elif filename == 'deploy.prototxt': deploy_file = full_path elif filename.endswith('.binaryproto'): mean_file = full_path elif filename == 'labels.txt': labels_file = full_path else: print 'Unknown file:', filename assert caffemodel is not None, 'Caffe model file not found' assert deploy_file is not None, 'Deploy file not found' #print("NOt working: print Image file before call classify.\n") #print(image_file) resultLabel = classify(caffemodel, deploy_file, image_file, mean_file=mean_file, labels_file=labels_file, batch_size=batch_size, use_gpu=use_gpu) return resultLabel
#Starts the Video Stream #drone.startVideo() #drone.showVideo() #time.sleep(5) Running = True while Running: start = timeit.timeit() #Get Pictures to put in the Model cap= drone.VideoImage print type(cap) New=numpy.array(cap) cap = cv2.cvtColor(New, cv2.COLOR_BGR2RGB) number=validation.classify("test/snapshot_iter_21120.caffemodel", "test/deploy.prototxt", cap, "test/mean.binaryproto", "test/labels.txt") #cv2.imshow("Frame", cap) #cv2.imwrite("frontd.png", cap) #Call The Classification Funktion here ! DirectionClass=number print number #Controll via Classified Data #Sleep defines the inertia time STime = 0.5 """ if DirectionClass == 0: