def __init__(self): AmiciExample.__init__(self) self.numX = 1 self.numP = 5 self.numK = 0 self.numZ = 0 self.modelOptions['theta'] = np.log10([0.1, 1000, 2, 8e-1, 1.6]) self.modelOptions['ts'] = np.linspace(0, 20, 100) self.modelOptions['pscale'] = 2 #self.modelOptions['qpositivex'] = [0] * self.numX self.solverOptions['atol'] = 1e-12 self.solverOptions['maxsteps'] = 1e4 self.solverOptions['nmaxevent'] = 2 self.solverOptions['rtol'] = 1e-14 self.solverOptions['sens_ind'] = [] self.solverOptions['sensi'] = 0 self.solverOptions['sensi_meth'] = 1 self.data['Y'] = np.full((len(self.modelOptions['ts']), 1), np.nan) self.data['Sigma_Y'] = np.full((len(self.modelOptions['ts']), 1), np.nan) self.data['Z'] = np.full((self.numZ, self.solverOptions['nmaxevent']), np.nan) self.data['Sigma_Z'] = np.full( (self.numZ, self.solverOptions['nmaxevent']), 0.5) self.data['condition'] = self.modelOptions['kappa'] self.data['t'] = self.modelOptions['ts']
def __init__(self): AmiciExample.__init__(self) self.numZ = 2 self.numX = 3 self.numP = 4 self.numK = 4 self.modelOptions['theta'] = np.log10([0.5, 2, 0.5, 0.5]) self.modelOptions['kappa'] = [4.0, 8.0, 10.0, 4.0] self.modelOptions['ts'] = np.linspace(0.0, 10.0, 20) self.modelOptions['pscale'] = 2 self.modelOptions['qpositivex'] = [0] * self.numX self.solverOptions['atol'] = 1e-16 self.solverOptions['maxsteps'] = 1e4 self.solverOptions['nmaxevent'] = 2 self.solverOptions['rtol'] = 1e-8 self.solverOptions['sens_ind'] = [] self.solverOptions['sensi'] = 0 self.solverOptions['sensi_meth'] = 1 self.data['Y'] = np.full((len(self.modelOptions['ts']), 1), np.nan) self.data['Sigma_Y'] = np.full((len(self.modelOptions['ts']), 1), np.nan) self.data['Z'] = np.full((self.solverOptions['nmaxevent'], self.numZ), np.nan) self.data['Sigma_Z'] = np.full( (self.solverOptions['nmaxevent'], self.numZ), np.nan) self.data['condition'] = self.modelOptions['kappa'] self.data['t'] = self.modelOptions['ts']
def __init__(self): AmiciExample.__init__(self) self.numX = 9 self.numP = 17 self.numK = 2 curPath = os.path.dirname(os.path.realpath(__file__)) dataPath = curPath + "/../../matlab/examples/example_jakstat_adjoint/pnas_data_original.xls" xls = pd.ExcelFile(dataPath).parse() self.modelOptions['ts'] = xls.time self.modelOptions['theta'] = np.array([ 0.60, 3, -0.95, -0.0075, 0, -2.8, -0.26, -0.075, -0.41, -5, -0.74, -0.64, -0.11, 0.027, -0.5, 0, -0.5 ]) self.modelOptions['kappa'] = [1.4, 0.45] self.modelOptions['pscale'] = 2 #self.modelOptions['qpositivex'] = [0] * self.numX self.solverOptions['atol'] = 1e-12 self.solverOptions['maxsteps'] = 1e4 self.solverOptions['nmaxevent'] = 10 self.solverOptions['rtol'] = 1e-12 self.solverOptions['sensi'] = 0 self.solverOptions['sensi_meth'] = 1 self.data['Y'] = np.array( xls.loc[:, ['pSTAT_au', 'tSTAT_au', 'pEpoR_au']]) self.data['Sigma_Y'] = np.full(self.data['Y'].shape, np.nan) self.data['Sigma_Z'] = [] self.data['Z'] = [] self.data['condition'] = self.modelOptions['kappa'] self.data['t'] = self.modelOptions['ts']
def __init__(self): AmiciExample.__init__(self) self.numX = 3 self.numP = 5 self.numK = 4 self.modelOptions['theta'] = np.log10([1, 0.5, 0.4, 2, 0.1]) self.modelOptions['kappa'] = [0.1, 0.4, 0.7, 1] self.modelOptions['ts'] = np.linspace(0, 100, 50) self.modelOptions['pscale'] = 2
def __init__(self): AmiciExample.__init__(self) self.numX = 6 self.numP = 0 self.numK = 6 self.modelOptions['theta'] = [] self.modelOptions['kappa'] = [0.29, 0.74, 0.44, 0.08, 0.27, 0.18] self.modelOptions['ts'] = np.linspace(0, 20, 201) self.modelOptions['pscale'] = 0 self.solverOptions['atol'] = 1e-6 self.solverOptions['rtol'] = 1e-4 self.solverOptions['sens_ind'] = [] self.solverOptions['sensi'] = 0 self.solverOptions['sensi_meth'] = 1
def __init__(self): AmiciExample.__init__( self ) self.numX = 2 self.numP = 4 self.numK = 0 self.modelOptions['theta'] = np.log10([1, 0.5, 2, 3]) self.modelOptions['ts'] = np.linspace(0, 3, 1001) self.modelOptions['pscale'] = 2 self.solverOptions['atol'] = 1e-16 self.solverOptions['maxsteps'] = 1e4 self.solverOptions['nmaxevent'] = 10 self.solverOptions['rtol'] = 1e-8 self.solverOptions['sens_ind'] = [] self.solverOptions['sensi'] = 0 self.solverOptions['sensi_meth'] = 1
def __init__(self): AmiciExample.__init__( self ) self.numX = 3 self.numP = 3 self.numK = 1 self.modelOptions['theta'] = np.log10([0.04, 1e4, 3e7]) self.modelOptions['kappa'] = [0.9] self.modelOptions['ts'] = np.append(0, 4 * np.logspace(-6, 6)) # logspace output from matlab slightly different: self.modelOptions['ts'] = [0.0, 4.0E-6, 7.030042499419172E-6, 1.2355374385909914E-5, 2.1714701757295438E-5, 3.8163819053999774E-5, 6.70733174724404E-5, 1.1788206810207238E-4, 2.071789871692485E-4, 3.641192711966091E-4, 6.39943487842423E-4, 0.0011247074791896924, 0.001976685344529533, 0.003474045495005412, 0.006105671868700933, 0.010730783181118898, 0.018859465453829577, 0.03314571091418737, 0.05825393910004978, 0.10238191690798133, 0.17993730675877775, 0.31624172843630804, 0.5557981977492555, 0.97682123781946, 1.7167737040515112, 3.017248025341849, 5.302845462360432, 9.319807242061488, 16.37966024952171, 28.787426920046055, 50.59420867421183, 88.91985930104782, 156.27759748218483, 274.6595380017199, 482.71705625573054, 848.380355168077, 1491.0374881259752, 2620.5142274381983, 4605.5815973057925, 8094.358590900622, 14225.921224892543, 25002.207701095904, 43941.64567950229, 77227.90915533014, 135728.87087581318, 238544.93266378547, 419245.253661875, 736827.9877306866, 1294983.017127056, 2275946.411607322, 4000000.0] self.modelOptions['pscale'] = 2 self.solverOptions['atol'] = 1e-12 self.solverOptions['rtol'] = 1e-8 self.solverOptions['sens_ind'] = [] self.solverOptions['sensi'] = 0 self.solverOptions['sensi_meth'] = 1
def __init__(self): AmiciExample.__init__(self) self.numZ = 1 self.numX = 2 self.numP = 4 self.numK = 2 self.modelOptions['theta'] = np.log10([0.02, 0.3, 65, 0.9]) self.modelOptions['kappa'] = [-60, 10] self.modelOptions['ts'] = [ 0.0, 0.9991997694102649, 1.9983995388205298, 2.9975993082307943, 3.9967990776410596, 4.995998847051324, 5.995198616461589, 6.994398385871854, 7.993598155282119, 8.992797924692384, 9.991997694102649, 10.991197463512913, 11.990397232923177, 12.989597002333443, 13.988796771743708, 14.987996541153972, 15.987196310564238, 16.986396079974504, 17.98559584938477, 18.984795618795033, 19.983995388205297, 20.98319515761556, 21.982394927025826, 22.981594696436094, 23.980794465846355, 24.979994235256623, 25.979194004666887, 26.978393774077155, 27.977593543487416, 28.976793312897684, 29.975993082307944, 30.975192851718212, 31.974392621128477, 32.97359239053874, 33.97279215994901, 34.97199192935927, 35.97119169876954, 36.9703914681798, 37.969591237590066, 38.96879100700033, 39.967990776410595, 40.967190545820856, 41.96639031523112, 42.96559008464139, 43.96478985405165, 44.96398962346192, 45.96318939287219, 46.962389162282456, 47.96158893169271, 48.96078870110298, 49.959988470513245, 50.959188239923506, 51.958388009333774, 52.95758777874404, 53.95678754815431, 54.95598731756456, 55.95518708697483, 56.9543868563851, 57.95358662579537, 58.95278639520563, 59.95198616461589, 60.95118593402616, 61.950385703436424, 62.949585472846685, 63.94878524225695, 64.94798501166721, 65.94718478107748, 66.94638455048775, 67.94558431989802, 68.94478408930829, 69.94398385871854, 70.9431836281288, 71.94238339753907, 72.94158316694934, 73.9407829363596, 74.93998270576986, 75.93918247518013, 76.9383822445904, 77.93758201400065, 78.93678178341092, 79.93598155282119, 80.93518132223146, 81.93438109164171, 82.93358086105198, 83.93278063046225, 84.93198039987251, 85.93118016928278, 86.93037993869305, 87.9295797081033, 88.92877947751359, 89.92797924692384, 90.9271790163341, 91.92637878574438, 92.92557855515463, 93.92477832456491, 94.92397809397517, 95.92317786338542, 96.9223776327957, 97.92157740220595, 98.92077717161622 ] self.modelOptions['pscale'] = 2 #self.modelOptions['qpositivex'] = [0] * self.numX self.solverOptions['atol'] = 1e-16 self.solverOptions['maxsteps'] = 1e45 self.solverOptions['nmaxevent'] = 22 self.solverOptions['rtol'] = 1e-12 self.solverOptions['sens_ind'] = [] self.solverOptions['sensi'] = 0 self.solverOptions['sensi_meth'] = 1 self.data['Y'] = np.full((len(self.modelOptions['ts']), 1), np.nan) self.data['Sigma_Y'] = np.full((len(self.modelOptions['ts']), 1), np.nan) self.data['Z'] = np.transpose([[ 2.4420740245701733, 5.921007525639647, np.nan, 10.366527794075543, 12.83694308382395, 14.624269559247253, 18.722446363647578, 22.20739095602005, 28.602369747827655, 31.442843729542822, 34.01927181474919, 41.26726577405225, 44.275254172160395, 51.56486254598814, 57.100273114298204, 61.961654997481084, 69.03838073191332, 74.3546047146856, 81.21960802401809, 87.2873927650102, 93.34894804384085, 98.57346300859241 ]]) self.data['Sigma_Z'] = 0.5 * np.ones(self.data['Z'].shape) self.data['condition'] = self.modelOptions['kappa'] self.data['t'] = self.modelOptions['ts']