예제 #1
0
def load_checkpoint(model, model_path, device_name, optimizer=None, compression_scheduler=None):
    """Loads the model from a specified directory with a specified name

    Keyword arguments:
    - model (``nn.Module``): The stored model state is copied to this model
    instance.
    - model_path: The model filename.
    - device_name: Device name for the model to be loaded into.
    - is_ddp: If true, model will be treated as a DistributedDataParallel instance
              and the actual model will be loaded into model.module
    - optimizer (``torch.optim``): The stored optimizer state is copied to this
    optimizer instance.
    - compression_algo: The compression scheduler for the saved state
                        to be loaded into

    Returns:
    The ``model``, ``optimizer``, epoch, mean IoU and ``compression_scheduler``, loaded from the
    checkpoint.

    """
    assert os.path.isfile(
        model_path), "The model file \"{0}\" doesn't exist.".format(model_path)

    # Load the stored model parameters to the model instance
    checkpoint = torch.load(model_path, map_location=device_name)
    load_state(model, checkpoint['state_dict'], is_resume=True)
    if optimizer is not None:
        optimizer.load_state_dict(checkpoint['optimizer'])
    epoch = checkpoint['epoch']
    miou = checkpoint['miou']

    if "scheduler" in checkpoint and compression_scheduler is not None:
        compression_scheduler.load_state_dict(checkpoint['scheduler'])

    return model, optimizer, epoch, miou, compression_scheduler
예제 #2
0
def test_load_state_interoperability(_algos, _models, is_resume):
    config_save = get_empty_config()
    config_save['compression'] = [{
        'algorithm': algo,
        'params': {}
    } for algo in _algos['save_algos']]
    algo_save = create_test_compression_algo(config_save,
                                             _models['save_model'])
    model_save = algo_save.model
    saved_model_state = model_save.state_dict()
    ref_num_loaded = len(saved_model_state)

    config_resume = get_empty_config()
    config_resume['compression'] = [{
        'algorithm': algo,
        'params': {}
    } for algo in _algos['load_algos']]
    algo_resume = create_test_compression_algo(config_resume,
                                               _models['resume_model'])
    model_resume = algo_resume.model

    if not is_resume or (is_resume and _algos['is_resume_ok']):
        act_num_loaded = load_state(model_resume, saved_model_state, is_resume)

        if ('magnitude_sparsity' in _algos['load_algos'] or 'const_sparsity' in _algos['load_algos']) \
            and 'rb_sparsity' in _algos['save_algos']:
            # no need to load _mask and _uniform
            ref_num_loaded -= 2
        assert act_num_loaded == ref_num_loaded
    else:
        with pytest.raises(RuntimeError):
            load_state(model_resume, saved_model_state, is_resume)
예제 #3
0
def test_can_restore_binary_mask_on_magnitude_quant_algo_resume():
    config = get_empty_config()
    config["compression"] = [
        {"algorithm": "magnitude_sparsity", "weight_importance": "abs",
         "params": {"schedule": "multistep", "sparsity_levels": [0.3, 0.5]}},
        {"algorithm": "quantization"}]
    reset_context('orig')
    reset_context('quantized_graphs')
    magnitude_quant_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    # load_state doesn't support CPU + Quantization
    sparse_model = torch.nn.DataParallel(magnitude_quant_algo.model)
    sparse_model.cuda()
    with torch.no_grad():
        sparse_model(torch.ones([1, 1, 10, 10]))

    reset_context('orig')
    reset_context('quantized_graphs')
    config = get_empty_config()
    config["compression"] = [{"algorithm": "const_sparsity"}, {"algorithm": "quantization"}]
    const_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    const_sparse_model = const_algo.model

    load_state(const_sparse_model, sparse_model.state_dict())

    op = const_sparse_model.module.conv1.pre_ops['0']
    check_equal(ref_mask_1, op.operand.binary_mask)

    op = const_sparse_model.module.conv2.pre_ops['0']
    check_equal(ref_mask_2, op.operand.binary_mask)
예제 #4
0
def create_model(config):
    ssd_net = build_ssd(config.model, config.ssd_params,
                        config.input_sample_size[-1], config.num_classes,
                        config)
    ssd_net.to(config.device)
    compression_algo = create_compression_algorithm(ssd_net, config)
    ssd_net = compression_algo.model
    weights = config.get('weights')
    if weights:
        sd = torch.load(weights, map_location='cpu')
        load_state(ssd_net, sd)
    ssd_net.train()
    model, _ = prepare_model_for_execution(ssd_net, config)
    return compression_algo, model
예제 #5
0
def load_torch_model(config, cuda=False):
    weights = config.get('weights')
    model = load_model(config.model,
                       pretrained=config.get('pretrained', True) if weights is None else False,
                       num_classes=config.get('num_classes', 1000),
                       model_params=config.get('model_params', {}))
    compression_algo, model = create_compressed_model(model, config)
    if weights:
        sd = torch.load(weights, map_location='cpu')
        load_state(model, sd)
    if cuda:
        model = model.cuda()
        model = torch.nn.DataParallel(model)
    print_statistics(compression_algo.statistics())
    return model
def build_ssd_mobilenet(cfg, size, num_classes, config):
    if size != 300:
        raise ValueError("Only Mobilenet-SSD with input size 300 is supported")
    mobilenet_ssd = MobileNetSSD(num_classes, cfg)

    if config.basenet:
        print('Loading base network...')
        basenet_weights = torch.load(config.basenet)['state_dict']
        new_weights = {}
        for wn, wv in basenet_weights.items():
            wn = wn.replace('model.', '')
            new_weights[wn] = wv

        load_state(mobilenet_ssd.basenet, new_weights, strict=False)
    return mobilenet_ssd
def build_ssd_vgg(cfg, size, num_classes, config):
    ssd_vgg = SSD_VGG(cfg,
                      size,
                      num_classes,
                      batch_norm=config.get('batchnorm', False))
    print('Initializing weights...')

    # ssd_vgg.apply(weights_init)

    if config.basenet:
        print('Loading base network...')
        basenet_weights = torch.load(config.basenet)
        new_weights = {}
        for wn, wv in basenet_weights.items():
            wn = wn.replace('features.', '')
            new_weights[wn] = wv

        load_state(ssd_vgg.basenet, new_weights, strict=False)
    return ssd_vgg
예제 #8
0
def resume_from_checkpoint(resuming_checkpoint, model, config, optimizer,
                           compression_algo):
    global best_acc1
    if osp.isfile(resuming_checkpoint):
        print("=> loading checkpoint '{}'".format(resuming_checkpoint))
        checkpoint = torch.load(resuming_checkpoint, map_location='cpu')
        load_state(model, checkpoint['state_dict'], is_resume=True)
        if config.mode.lower() == 'train' and config.to_onnx is None:
            config.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            compression_algo.scheduler.load_state_dict(checkpoint['scheduler'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch: {}, best_acc1: {:.3f})".
                  format(resuming_checkpoint, checkpoint['epoch'], best_acc1))
        else:
            print("=> loaded checkpoint '{}'".format(resuming_checkpoint))
    else:
        raise FileNotFoundError(
            "no checkpoint found at '{}'".format(resuming_checkpoint))
    return model, config, optimizer, compression_algo
예제 #9
0
def test_can_restore_binary_mask_on_magnitude_algo_resume():
    config = get_empty_config()
    config['compression'] = {"algorithm": "magnitude_sparsity", "weight_importance": "abs",
                             "params": {"schedule": "multistep", "sparsity_levels": [0.3, 0.5]}}
    magnitude_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    sparse_model = magnitude_algo.model
    with torch.no_grad():
        sparse_model(torch.ones([1, 1, 10, 10]))

    config = get_empty_config()
    config["compression"] = {"algorithm": "const_sparsity"}
    const_algo = create_compression_algorithm(MagnitudeTestModel(), config)
    const_sparse_model = const_algo.model

    load_state(const_sparse_model, sparse_model.state_dict())

    op = const_sparse_model.conv1.pre_ops['0']
    check_equal(ref_mask_1, op.operand.binary_mask)

    op = const_sparse_model.conv2.pre_ops['0']
    check_equal(ref_mask_2, op.operand.binary_mask)
def test_load_state_skips_not_matched_params__from_smaller_to_larger():
    ref_weights = torch.tensor([[[[3, 2], [2, 3]]]])
    ref_bias = torch.tensor([2.])
    model_save = BasicConvTestModel(out_channels=2)
    model_load = BasicConvTestModel(out_channels=1, weight_init=2, bias_init=2)

    num_loaded = load_state(model_load, model_save.state_dict())

    assert num_loaded == 0
    act_bias = model_load.conv.bias.data
    act_weights = model_load.conv.weight.data
    check_equal(act_bias, ref_bias)
    check_equal(act_weights, ref_weights)
def test_load_state_skips_not_matched_params__from_larger_to_smaller():
    ref_weights = BasicConvTestModel.default_weight()
    ref_bias = BasicConvTestModel.default_bias()
    model_save = BasicConvTestModel(out_channels=1, weight_init=2, bias_init=2)
    model_load = BasicConvTestModel(out_channels=2)

    num_loaded = load_state(model_load, model_save.state_dict())

    act_bias = model_load.conv.bias.data
    act_weights = model_load.conv.weight.data
    assert num_loaded == 0
    check_equal(act_bias, ref_bias)
    check_equal(act_weights, ref_weights)
예제 #12
0
def test_ordinary_load(algo, _models, is_resume):
    config = get_empty_config()
    if algo:
        config['compression'] = {'algorithm': algo, 'params': {}}

    algo_save = create_test_compression_algo(config, _models['save_model'])
    model_save = algo_save.model

    algo_resume = create_test_compression_algo(config, _models['resume_model'])
    model_resume = algo_resume.model

    num_loaded = load_state(model_resume, model_save.state_dict(), is_resume)

    assert num_loaded == len(model_save.state_dict())
예제 #13
0
def main_worker(current_gpu, config):
    config.current_gpu = current_gpu
    config.distributed = config.execution_mode in (ExecutionMode.DISTRIBUTED, ExecutionMode.MULTIPROCESSING_DISTRIBUTED)
    if config.distributed:
        configure_distributed(config)

    if is_main_process():
        configure_logging(config)
        print_args(config)

    print(config)

    config.device = get_device(config)
    dataset = get_dataset(config.dataset)
    color_encoding = dataset.color_encoding
    num_classes = len(color_encoding)

    weights = config.get('weights')
    model = load_model(config.model,
                       pretrained=config.get('pretrained', True) if weights is None else False,
                       num_classes=num_classes,
                       model_params=config.get('model_params', {}))
    compression_algo, model = create_compressed_model(model, config)
    if weights:
        sd = torch.load(weights, map_location='cpu')
        load_state(model, sd)

    model, model_without_dp = prepare_model_for_execution(model, config)

    if config.distributed:
        compression_algo.distributed()

    resuming_checkpoint = config.resuming_checkpoint

    if resuming_checkpoint is not None:
        if not config.pretrained:
            # Load the previously saved model state
            model, _, _, _, _ = \
                load_checkpoint(model, resuming_checkpoint, config.device,
                                compression_scheduler=compression_algo.scheduler)

    if config.to_onnx is not None:
        compression_algo.export_model(config.to_onnx)
        print("Saved to", config.to_onnx)
        return

    if config.mode.lower() == 'test':
        print(model)
        model_parameters = filter(lambda p: p.requires_grad, model.parameters())
        params = sum([np.prod(p.size()) for p in model_parameters])
        print("Trainable argument count:{params}".format(params=params))

        model = model.to(config.device)
        loaders, w_class = load_dataset(dataset, config)
        _, val_loader = loaders
        test(model, val_loader, w_class, color_encoding, config)
        print_statistics(compression_algo.statistics())
    elif config.mode.lower() == 'train':
        loaders, w_class = load_dataset(dataset, config)
        train_loader, val_loader = loaders
        if not resuming_checkpoint:
            compression_algo.initialize(train_loader)
        model = \
            train(model, model_without_dp, compression_algo, train_loader, val_loader, w_class, color_encoding, config)
    else:
        # Should never happen...but just in case it does
        raise RuntimeError(
            "\"{0}\" is not a valid choice for execution mode.".format(
                config.mode))
예제 #14
0
def main_worker(current_gpu, config):
    #################################
    # Setup experiment environment
    #################################
    config.current_gpu = current_gpu
    config.distributed = config.execution_mode in (
        ExecutionMode.DISTRIBUTED, ExecutionMode.MULTIPROCESSING_DISTRIBUTED)
    if config.distributed:
        configure_distributed(config)
    if is_on_first_rank(config):
        configure_logging(config)
        print_args(config)

    config.device = get_device(config)
    config.start_iter = 0

    ##################
    # Prepare model
    ##################

    compression_algo, net = create_model(config)
    if config.distributed:
        config.batch_size //= config.ngpus_per_node
        config.workers //= config.ngpus_per_node
        compression_algo.distributed()

    ###########################
    # Criterion and optimizer
    ###########################

    params_to_optimize = get_parameter_groups(net, config)
    optimizer, lr_scheduler = make_optimizer(params_to_optimize, config)

    criterion = MultiBoxLoss(config,
                             config['num_classes'],
                             overlap_thresh=0.5,
                             prior_for_matching=True,
                             bkg_label=0,
                             neg_mining=True,
                             neg_pos=3,
                             neg_overlap=0.5,
                             encode_target=False,
                             device=config.device)

    ###########################
    # Prepare data
    ###########################

    test_data_loader, train_data_loader = create_dataloaders(config)

    ###########################
    # Load checkpoint
    ###########################

    resuming_checkpoint = config.resuming_checkpoint
    if resuming_checkpoint:
        print('Resuming training, loading {}...'.format(resuming_checkpoint))
        checkpoint = torch.load(resuming_checkpoint, map_location='cpu')
        # use checkpoint itself in case of only state dict is saved
        # i.e. checkpoint is created with `torch.save(module.state_dict())`
        state_dict = checkpoint.get('state_dict', checkpoint)
        load_state(net, state_dict, is_resume=True, strict=True)
        if config.mode.lower() == 'train' and config.to_onnx is None:
            compression_algo.scheduler.load_state_dict(checkpoint['scheduler'])
            optimizer.load_state_dict(
                checkpoint.get('optimizer', optimizer.state_dict()))
            config.start_iter = checkpoint.get('iter', 0) + 1

    if config.to_onnx:
        compression_algo.export_model(config.to_onnx)
        print("Saved to {}".format(config.to_onnx))
        return

    if config.mode.lower() == 'test':
        with torch.no_grad():
            print_statistics(compression_algo.statistics())
            net.eval()
            test_net(net,
                     config.device,
                     test_data_loader,
                     distributed=config.distributed)
            return

    if not resuming_checkpoint:
        compression_algo.initialize(train_data_loader)

    train(net, compression_algo, train_data_loader, test_data_loader,
          criterion, optimizer, config, lr_scheduler)
예제 #15
0
def main_worker(current_gpu, config):
    global best_acc1
    config.current_gpu = current_gpu
    config.distributed = config.execution_mode in (
        ExecutionMode.DISTRIBUTED, ExecutionMode.MULTIPROCESSING_DISTRIBUTED)
    if config.distributed:
        configure_distributed(config)

    config.device = get_device(config)

    if is_main_process():
        configure_logging(config)
        print_args(config)

    if config.seed is not None:
        manual_seed(config.seed)
        cudnn.deterministic = True
        cudnn.benchmark = False

    # create model
    model_name = config['model']
    weights = config.get('weights')
    model = load_model(model_name,
                       pretrained=config.get('pretrained', True)
                       if weights is None else False,
                       num_classes=config.get('num_classes', 1000),
                       model_params=config.get('model_params'))
    compression_algo, model = create_compressed_model(model, config)
    if weights:
        load_state(model, torch.load(weights, map_location='cpu'))
    model, _ = prepare_model_for_execution(model, config)
    if config.distributed:
        compression_algo.distributed()

    is_inception = 'inception' in model_name

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss()
    criterion = criterion.to(config.device)

    params_to_optimize = get_parameter_groups(model, config)
    optimizer, lr_scheduler = make_optimizer(params_to_optimize, config)

    resuming_checkpoint = config.resuming_checkpoint
    # optionally resume from a checkpoint
    if resuming_checkpoint is not None:
        model, config, optimizer, compression_algo = \
            resume_from_checkpoint(resuming_checkpoint, model,
                                   config, optimizer, compression_algo)

    if config.to_onnx is not None:
        compression_algo.export_model(config.to_onnx)
        print("Saved to", config.to_onnx)
        return

    if config.execution_mode != ExecutionMode.CPU_ONLY:
        cudnn.benchmark = True

    # Data loading code
    train_loader, train_sampler, val_loader = create_dataloaders(config)

    if config.mode.lower() == 'test':
        print_statistics(compression_algo.statistics())
        validate(val_loader, model, criterion, config)

    if config.mode.lower() == 'train':
        if not resuming_checkpoint:
            compression_algo.initialize(train_loader)
        train(config, compression_algo, model, criterion, is_inception,
              lr_scheduler, model_name, optimizer, train_loader, train_sampler,
              val_loader)