def main(argv): parser = get_argument_parser() args = parser.parse_args(args=argv) config = create_sample_config(args, parser) if config.dist_url == "env://": config.update_from_env() configure_paths(config) copyfile(args.config, osp.join(config.log_dir, 'config.json')) source_root = Path(__file__).absolute().parents[2] # nncf root create_code_snapshot(source_root, osp.join(config.log_dir, "snapshot.tar.gz")) if config.seed is not None: warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') config.execution_mode = get_execution_mode(config) if config.metrics_dump is not None: write_metrics(0, config.metrics_dump) if not is_staged_quantization(config): start_worker(main_worker, config) else: from examples.classification.staged_quantization_worker import staged_quantization_main_worker start_worker(staged_quantization_main_worker, config)
def main(argv): parser = get_argument_parser() args = parser.parse_args(args=argv) config = create_sample_config(args, parser) configure_paths(config) source_root = Path(__file__).absolute().parents[2] # nncf root create_code_snapshot(source_root, osp.join(config.log_dir, "snapshot.tar.gz")) config.execution_mode = get_execution_mode(config) if config.dataset_dir is not None: config.train_imgs = config.train_anno = config.test_imgs = config.test_anno = config.dataset_dir start_worker(main_worker, config)
def main(argv): parser = get_arguments_parser() arguments = parser.parse_args(args=argv) config = create_sample_config(arguments, parser) if arguments.dist_url == "env://": config.update_from_env() if not osp.exists(config.log_dir): os.makedirs(config.log_dir) config.log_dir = str(config.log_dir) configure_paths(config) logger.info("Save directory: {}".format(config.log_dir)) config.execution_mode = get_execution_mode(config) start_worker(main_worker, config)