예제 #1
0
    # loss and network
    criterion = nn.CrossEntropyLoss()
    net = ResNet14(in_channels=3, out_channels=5, D=2)
    print(net)

    # a data loader must return a tuple of coords, features, and labels.
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    net = net.to(device)
    optimizer = SGD(net.parameters(), lr=1e-2)

    for i in range(10):
        optimizer.zero_grad()

        # Get new data
        coords, feat, label = data_loader()
        input = ME.SparseTensor(feat, coords=coords).to(device)
        label = label.to(device)

        # Forward
        output = net(input)

        # Loss
        loss = criterion(output.F, label)
        print('Iteration: ', i, ', Loss: ', loss.item())

        # Gradient
        loss.backward()
        optimizer.step()

    # Saving and loading a network
예제 #2
0
    # loss and network
    criterion = nn.CrossEntropyLoss()
    net = MinkUNet14A(in_channels=3, out_channels=5, D=2)
    print(net)

    # a data loader must return a tuple of coords, features, and labels.
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    net = net.to(device)
    optimizer = SGD(net.parameters(), lr=1e-2)

    for i in range(10):
        optimizer.zero_grad()

        # Get new data
        coords, feat, label = data_loader(is_classification=False)
        input = ME.SparseTensor(feat, coords=coords).to(device)
        label = label.to(device)

        # Forward
        output = net(input)

        # Loss
        loss = criterion(output.F, label)
        print('Iteration: ', i, ', Loss: ', loss.item())

        # Gradient
        loss.backward()
        optimizer.step()

    # Saving and loading a network