def main(): tf.set_random_seed(1234) np.random.seed(1234) # Load CIFAR data_path = os.path.join(conf.data_dir, "cifar10", "cifar-10-python.tar.gz") x_train, t_train, x_test, t_test = dataset.load_cifar10(data_path, normalize=True, one_hot=True) # Define model parameters z_dim = 40 # Build the computation graph is_training = tf.placeholder(tf.bool, shape=[], name="is_training") x = tf.placeholder(tf.float32, shape=[None, 32, 32, 3], name="x") optimizer = tf.train.AdamOptimizer(learning_rate=0.0002, beta1=0.5) def build_tower_graph(x, id_): tower_x = x[id_ * tf.shape(x)[0] // FLAGS.num_gpus:(id_ + 1) * tf.shape(x)[0] // FLAGS.num_gpus] n = tf.shape(tower_x)[0] x_gen = generator(n, z_dim, is_training) x_class_logits = discriminator(tower_x, is_training) x_gen_class_logits = discriminator(x_gen, is_training) gen_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(x_gen_class_logits), logits=x_gen_class_logits)) gen_var_list = tf.trainable_variables(scope="gen") gen_grads = optimizer.compute_gradients(gen_loss, var_list=gen_var_list) disc_loss = (tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.ones_like(x_class_logits), logits=x_class_logits)) + tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.zeros_like(x_gen_class_logits), logits=x_gen_class_logits))) / 2. disc_var_list = tf.trainable_variables(scope="disc") disc_grads = optimizer.compute_gradients(disc_loss, var_list=disc_var_list) grads = disc_grads + gen_grads return grads, gen_loss, disc_loss tower_losses = [] tower_grads = [] for i in range(FLAGS.num_gpus): with tf.device("/gpu:%d" % i): with tf.name_scope("tower_%d" % i): grads, gen_loss, disc_loss = build_tower_graph(x, i) tower_losses.append([gen_loss, disc_loss]) tower_grads.append(grads) gen_loss, disc_loss = multi_gpu.average_losses(tower_losses) grads = multi_gpu.average_gradients(tower_grads) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): infer_op = optimizer.apply_gradients(grads) # Generate images eval_x_gen = generator(100, z_dim, False) # Define training/evaluation parameters epochs = 1000 batch_size = 32 * FLAGS.num_gpus iters = x_train.shape[0] // batch_size print_freq = 100 save_freq = 100 # Run the inference with multi_gpu.create_session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(1, epochs + 1): np.random.shuffle(x_train) gen_losses, disc_losses = [], [] time_train = -time.time() for t in range(iters): iter = t + 1 x_batch = x_train[t * batch_size:(t + 1) * batch_size] _, g_loss, d_loss = sess.run([infer_op, gen_loss, disc_loss], feed_dict={ x: x_batch, is_training: True }) gen_losses.append(g_loss) disc_losses.append(d_loss) if iter % print_freq == 0: print("Epoch={} Iter={} ({:.3f}s/iter): " "Gen loss = {} Disc loss = {}".format( epoch, iter, (time.time() + time_train) / print_freq, np.mean(gen_losses), np.mean(disc_losses))) gen_losses = [] disc_losses = [] if iter % save_freq == 0: images = sess.run(eval_x_gen) name = "results/dcgan/dcgan.epoch.{}.iter.{}.png".format( epoch, iter) save_image_collections(images, name, scale_each=True) if iter % print_freq == 0: time_train = -time.time()
var_list=disc_var_list) gen_grads = optimizer.compute_gradients(gen_loss, var_list=gen_var_list) grads = disc_grads + gen_grads return grads, gen_loss, disc_loss tower_losses = [] tower_grads = [] for i in range(FLAGS.num_gpus): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): grads, gen_loss, disc_loss = build_tower_graph(x, i) tower_losses.append([gen_loss, disc_loss]) tower_grads.append(grads) gen_loss, disc_loss = multi_gpu.average_losses(tower_losses) grads = multi_gpu.average_gradients(tower_grads) infer = optimizer.apply_gradients(grads) _, eval_x_gen = generator(None, gen_size, n_z, is_training) gen_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='generator') saver = tf.train.Saver(max_to_keep=10, var_list=gen_var_list) # Run the inference with multi_gpu.create_session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(1, epochs + 1): if epoch % anneal_lr_freq == 0: learning_rate *= anneal_lr_rate np.random.shuffle(x_train) gen_losses, disc_losses = [], []
def main(): tf.set_random_seed(1234) np.random.seed(1234) # Load MINST data_path = os.path.join(conf.data_dir, 'mnist.pkl.gz') x_train, t_train, x_valid, t_valid, x_test, t_test = \ dataset.load_mnist_realval(data_path) n_xl = 28 n_channels = 1 x_train = np.vstack([x_train, x_valid]).astype(np.float32).reshape( (-1, n_xl, n_xl, n_channels)) # Define model parameters n_z = 40 # Define training/evaluation parameters epochs = 1000 batch_size = 64 * FLAGS.num_gpus gen_size = 100 iters = x_train.shape[0] // batch_size print_freq = 100 save_freq = 100 # Build the computation graph is_training = tf.placeholder(tf.bool, shape=[], name='is_training') x = tf.placeholder(tf.float32, shape=(None, n_xl, n_xl, n_channels), name='x') optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0002, decay=0.5) def build_tower_graph(x, id_): tower_x = x[id_ * tf.shape(x)[0] // FLAGS.num_gpus:(id_ + 1) * tf.shape(x)[0] // FLAGS.num_gpus] n = tf.shape(tower_x)[0] gen, x_gen = generator(None, n, n_z, is_training) x_critic = discriminator(tower_x, is_training) x_gen_critic = discriminator(x_gen, is_training) gen_var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator') disc_var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator') disc_loss = -tf.reduce_mean(x_critic - x_gen_critic) gen_loss = -tf.reduce_mean(x_gen_critic) disc_grads = optimizer.compute_gradients(disc_loss, var_list=disc_var_list) gen_grads = optimizer.compute_gradients(gen_loss, var_list=gen_var_list) grads = disc_grads + gen_grads return grads, gen_loss, disc_loss tower_losses = [] tower_grads = [] for i in range(FLAGS.num_gpus): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): grads, gen_loss, disc_loss = build_tower_graph(x, i) tower_losses.append([gen_loss, disc_loss]) tower_grads.append(grads) gen_loss, disc_loss = multi_gpu.average_losses(tower_losses) w_distance = -disc_loss grads = multi_gpu.average_gradients(tower_grads) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): infer_op = optimizer.apply_gradients(grads) # Clip weights of the critic to ensure 1-Lipschitz disc_var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator') with tf.control_dependencies([infer_op]): clip_op = tf.group(*[ var.assign(tf.clip_by_value(var, -0.01, 0.01)) for var in disc_var_list ]) # Generate images _, eval_x_gen = generator(None, gen_size, n_z, False) # Run the inference with multi_gpu.create_session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(1, epochs + 1): np.random.shuffle(x_train) w_losses = [] time_train = -time.time() for t in range(iters): iter = t + 1 x_batch = x_train[t * batch_size:(t + 1) * batch_size] _, _, w_loss = sess.run([infer_op, clip_op, w_distance], feed_dict={ x: x_batch, is_training: True }) w_losses.append(w_loss) if iter % print_freq == 0: print('Epoch={} Iter={} ({:.3f}s/iter): ' 'wasserstein distance = {}'.format( epoch, iter, (time.time() + time_train) / print_freq, np.mean(w_losses))) w_losses = [] if iter % save_freq == 0: images = sess.run(eval_x_gen) name = "results/wgan/wgan.epoch.{}.iter.{}.png".format( epoch, iter) save_image_collections(images, name, scale_each=True) if iter % print_freq == 0: time_train = -time.time()