예제 #1
0
def main():
    if args.cuda and torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    print("Using device", type(device))

    algorithmopts = yaml.safe_load(open(args.algorithm_specs, "r"))

    testcase = load_example(algorithmopts["example"])

    # start_time = time.time()  #######

    model, likelihood = init_gp(testcase, algorithmopts,
                                algorithmopts["ninit"], device)

    # time1 = time.time()  ####
    # print("--- init_gp %s seconds ---" % (time1 - start_time))  ###

    estimator = ExcursionSetEstimator(testcase, algorithmopts, model,
                                      likelihood, device)

    timestampStr = datetime.datetime.now().strftime("%d-%b-%Y_%H:%M:%S") + "/"

    os.mkdir(args.outputfolder + timestampStr)

    while estimator.this_iteration < algorithmopts["nupdates"]:
        time2 = time.time()

        estimator.step(testcase, algorithmopts, model, likelihood)

        time3 = time.time()  ####
        print("--- step %s seconds ---" % (time3 - time2))  ###

        model = estimator.update_posterior(testcase, algorithmopts, model,
                                           likelihood)

        time4 = time.time()  ####
        print("--- posterior %s seconds ---" % (time4 - time3))  ###

        estimator.plot_status(testcase, algorithmopts, model,
                              estimator.acq_values,
                              args.outputfolder + timestampStr)
        estimator.get_diagnostics(testcase, model, likelihood)

        time5 = time.time()  ####
        print("--- get_diagnostics %s seconds ---" % (time5 - time4))  ###

    estimator.print_results(args.outputfolder + timestampStr, testcase,
                            algorithmopts)
예제 #2
0
def test_init_gp():

    device = torch.device("cpu")
    ninit = 1
    algorithmopts = yaml.safe_load(open("testing/algorithm_specs.yaml", "r"))

    # three toy examples
    for example in ["1Dtoyanalysis", "2Dtoyanalysis", "3Dtoyanalysis"]:
        print(example)
        testcase = load_example(example)
        gp, likelihood = init_gp(testcase, algorithmopts, ninit, device)

        assert type(gp.train_inputs[0]) != type(None)
        assert type(gp.train_targets) != type(None)
def test_init_excursion():

    device = torch.device("cpu")
    ninit = 1
    algorithmopts = yaml.safe_load(open("testing/algorithm_specs.yaml", "r"))

    # three toy examples
    for example in ["1Dtoyanalysis", "2Dtoyanalysis", "3Dtoyanalysis"]:
        testcase = load_example(example)
        gp, likelihood = init_gp(testcase, algorithmopts, ninit, device)

        estimator = ExcursionSetEstimator(testcase, algorithmopts, gp,
                                          likelihood, device)

        assert type(estimator) != type(None)
        assert type(estimator._X_grid) != type(None)
        assert type(estimator._n_dims) != type(None)
        assert type(estimator._acq_type) != type(None)
def test_full_simple():

    tol = 1e-6
    device = torch.device("cpu")
    ninit = 1
    algorithmopts = yaml.safe_load(
        open("testing/algorithm_specs_full_test.yaml", "r"))

    # three toy examples
    for example in ["1D_test"]:
        testcase = load_example(example)
        model, likelihood = init_gp(testcase, algorithmopts, ninit, device)

        estimator = ExcursionSetEstimator(testcase, algorithmopts, model,
                                          likelihood, device)

        while estimator.this_iteration < algorithmopts["nupdates"]:
            estimator.step(testcase, algorithmopts, model, likelihood)
            model = estimator.update_posterior(testcase, algorithmopts, model,
                                               likelihood)

    assert type(torch.abs(model.train_targets) <= tol) != type(None)
def test_step_excursion():

    device = torch.device("cpu")
    ninit = 1
    algorithmopts = yaml.safe_load(open("testing/algorithm_specs.yaml", "r"))

    # three toy examples
    for example in ["1Dtoyanalysis", "2Dtoyanalysis", "3Dtoyanalysis"]:
        testcase = load_example(example)
        gp, likelihood = init_gp(testcase, algorithmopts, ninit, device)

        estimator = ExcursionSetEstimator(testcase, algorithmopts, gp,
                                          likelihood, device)

        # one iteration only to test
        estimator.step(testcase, algorithmopts, gp, likelihood)

        assert type(estimator) != type(None)
        assert type(estimator.x_new) != type(None)
        assert type(estimator.y_new) != type(None)
        assert estimator.walltime_step != 0.0
        assert estimator.this_iteration == 1
예제 #6
0
plt.savefig('plots/test_fast2D.png')

#load algorithm options
file = open('excursion/testcases/algorithms/algorithm_specs.yaml', "r")
algorithm_opts = yaml.safe_load(file)
print('algorithm_opts =')
print(json.dumps(algorithm_opts, indent=4))
## Step 2: Init the Gaussian Proces
#We initialize the gaussian process and likelihood according to `algorithm_opts['init_type']`
if (torch.cuda.is_available()):
    device = torch.device('cuda')
else:
    device = torch.device('cpu')

model, likelihood = init_gp(testcase_details, \
                            algorithm_opts, \
                            algorithm_opts["ninit"], \
                            device)

# X_init and y_init are random points so that we can fit the GP posterior wrt these points
# fit hyperparameters
model.train()
likelihood.train()
excursion.fit_hyperparams(model, likelihood)
# plot the fitting
plots.plot_GP_init(plt,
                   model,
                   testcase_details,
                   device=device,
                   dtype=torch.float64)
## Step 3: Init the ExcursionEstimator
estimator = ExcursionSetEstimator(testcase_details, \