val_step_update = cfg.val_step_update ###################################### ###################################### # Load training and validation images & labels ###################################### #load training volumes id numbers to train the unet train_list = data_list.train_data(parse_config.no_of_tr_imgs, parse_config.comb_tr_imgs) #load saved training data in cropped dimensions directly print('loading train volumes') train_imgs, train_labels = dt.load_cropped_img_labels(train_list) #print('train shape',train_imgs.shape,train_labels.shape) #load validation volumes id numbers to save the best model during training val_list = data_list.val_data(parse_config.no_of_tr_imgs, parse_config.comb_tr_imgs) #load val data both in original dimensions and its cropped dimensions print('loading val volumes') val_label_orig, val_img_crop, val_label_crop, pixel_val_list = load_val_imgs( val_list, dt, orig_img_dt) # get test volumes id list print('get test volumes list') test_list = data_list.test_data() ###################################### ###################################### #define directory to save the model save_dir = str(cfg.srt_dir) + '/models/' + str( parse_config.dataset) + '/trained_models/train_baseline/'
###################################### # load train and val images train_list = data_list.train_data(parse_config.no_of_tr_imgs,parse_config.comb_tr_imgs) #load train data cropped images directly print('loading train imgs') train_imgs,train_labels = dt.load_acdc_cropped_img_labels(train_list) if(parse_config.no_of_tr_imgs=='tr1'): train_imgs_copy=np.copy(train_imgs) train_labels_copy=np.copy(train_labels) while(train_imgs.shape[2]<cfg.batch_size): train_imgs=np.concatenate((train_imgs,train_imgs_copy),axis=2) train_labels=np.concatenate((train_labels,train_labels_copy),axis=2) del train_imgs_copy,train_labels_copy val_list = data_list.val_data() #load both val data and its cropped images print('loading val imgs') val_label_orig,val_img_crop,val_label_crop,pixel_val_list=load_val_imgs(val_list,dt,orig_img_dt) # # load unlabeled images unl_list = data_list.unlabeled_data() print('loading unlabeled imgs') unlabeled_imgs=dt.load_acdc_cropped_img_labels(unl_list,label_present=0) #print('unlabeled_imgs',unlabeled_imgs.shape) # get test list print('get test imgs list') test_list = data_list.test_data() struct_name=cfg.struct_name val_step_update=cfg.val_step_update