예제 #1
0
def load_DART_obs_epoch_file_as_dataframe(E,date=datetime.datetime(2009,1,1,0,0,0),obs_type_list=['ERP_PM1','ERP_LOD'],ens_status_list=['ensemble member'], hostname='taurus',debug=False):

	"""
	 read in a DART obs epoch file, defined by its date and the Experiment E, and return as a Pandas data frame, in which al the observations 
	 that have ensemble status and obs types given in ens_status_list and obs_type_list, respectively, 
	 are ordered according to ObsIndex.  
	 this should eventually replace the SR load_DART_obs_epoch_file  
	"""

	# find the directory for this run   
	# this requires running a subroutine called `find_paths`, stored in a module `experiment_datails`, 
	# but written my each user -- it should take an experiment dictionary and the hostname 
	# as input, and return as output 
	# the filepath that corresponds to the desired field, diagnostic, etc. 
	filename = es.find_paths(E,date,hostname=hostname)
	if not os.path.exists(filename):
		if debug:
			print("+++cannot find files that look like  "+filename+' -- returning None')
		return None

	# load the file and select the observation we want
	else:
		f = Dataset(filename,'r')
		CopyMetaData = f.variables['CopyMetaData'][:]
		ObsTypesMetaData = f.variables['ObsTypesMetaData'][:]
		observations = f.variables['observations'][:]
		time = f.variables['time'][:]
		copy = f.variables['copy'][:]
		obs_type = f.variables['obs_type'][:]
		location = f.variables['location'][:]
		ObsIndex = f.variables['ObsIndex'][:]
		qc = f.variables['qc'][:]

		# find the obs_type number corresponding to the desired observations
		obs_type_no_list = []
		for obs_type_string in obs_type_list:
			obs_type_no_list.append(get_obs_type_number(f,obs_type_string))
		
		# expand "CopyMetaData" into lists that hold ensemble status and diagnostic
		diagn = []
		ens_status = []
		CMD = []
		# loop over the copy meta data and record the ensemble status and diagnostic for reach copy
		for icopy in copy:
			temp = CopyMetaData[icopy-1,].tostring()
			CMD.append(temp.rstrip())

			if 'prior' in temp:
				diagn.append('Prior')
			if 'posterior' in temp:
				diagn.append('Posterior')
			if 'truth' in temp:
				diagn.append('Truth')
				ens_status.append('Truth')
			if 'observations' in temp:
				diagn.append('Observation')
				ens_status.append('Observation')
			if 'ensemble member' in temp:
				ens_status.append('ensemble member')
			if 'ensemble mean' in temp:
				ens_status.append('ensemble mean')
			if 'ensemble spread' in temp:
				ens_status.append('ensemble spread')
			if 'observation error variance' in temp:
				ens_status.append(None)
				diagn.append(None)
			
		f.close()

	# return the desired observations and copys, and the copy meta data
	#for obs_type_no in obs_type_no_list:
	iobs=[]
	iensstatus=[]
	if debug:
		print('selecting the following obs type numbers')
		print(obs_type_no_list)
	for OTN in obs_type_no_list:
		itemp = np.where(obs_type == OTN)
		if itemp is not None:
			# itemp is a tuple - the first entry is the list of indices (I know - this is f****d)
			itemp2 = itemp[0]
			# now scoot through itemp2 (which is an ndarray...wtf?) and store the entires in a list
			for i in itemp2:
				iobs.append(i)


	# select the copys correposnind go the right ensemble status (or just copystring if the list isn;t give) and diagnostic
	if ens_status_list is None:
		ens_status_list = []
		ens_status_list.append(E['copystring'])
		if debug:
			print(ens_status_list)

	for ES in ens_status_list:
		indices = [i for i, x in enumerate(ens_status) if x == ES]
		iensstatus.extend(indices)
	iensstatus.sort()	# this is the list of copies with the right ensemble status
	idiagn = [i for i,x in enumerate(diagn) if x == E['diagn']]	# this is the list of copies with the right diagnostic

	# we are interested in the indices that appear in both iensstatus and idiagn
	sdiagn = set(idiagn)
	cc = [val for val in iensstatus if val in sdiagn]
	if debug:
		print('these are the copies that suit both the requested ensemble status and the requested diagnostic:')
		print(cc)

	# given the above copy numbers, find the names that suit them
	copynames = [CMD[ii] for ii in cc]

	# turn the array obs_type from numbers to words
	OT = []
	for ii in obs_type:
		temp = ObsTypesMetaData[ii-1,].tostring()
		OT.append(temp)
	# these are the obs types for the observations we select out
	OT_select = [OT[ii] for ii in iobs]


	# now select the observations corresponding to the selected copies and obs types
	i1 = np.array(iobs)
	i2 = np.array(cc)
	obs_select = observations[i1[:,None],i2]
	location_select = location[i1,]
	obs_type_select = obs_type[i1,]
	qc1_select = qc[i1,0]
	qc2_select = qc[i1,1]
	time_select = time[i1]
	ObsIndex_select = ObsIndex[i1]
	

	# for the arrays that are only defined by obs index, replicate for each copy
	loc1 = location_select[:,0]
	loc2 = location_select[:,1]
	loc3 = location_select[:,2]
	loc1_copies= np.repeat(loc1[:,np.newaxis],len(i2),1)
	loc2_copies= np.repeat(loc2[:,np.newaxis],len(i2),1)
	loc3_copies= np.repeat(loc3[:,np.newaxis],len(i2),1)
	qc1_copies =  np.repeat(qc1_select[:,np.newaxis],len(i2),1)
	qc2_copies =  np.repeat(qc2_select[:,np.newaxis],len(i2),1)
	obs_type_copies=  np.repeat(obs_type_select[:,np.newaxis],len(i2),1)
	ObsIndex_copies =  np.repeat(ObsIndex_select[:,np.newaxis],len(i2),1)

	# reshape the output from arrays to vectors
	# also have to squeeze out the empty dimension -- this seems really inelegant, but I don't know a better way to do it!
	L = len(iobs)*len(cc)		# length of the data vector
	date_out = np.repeat(date,L)
	obs_out = np.squeeze(np.reshape(obs_select,(L,1)))
	lon_out = np.squeeze(np.reshape(loc1_copies,(L,1)))
	lat_out = np.squeeze(np.reshape(loc2_copies,(L,1)))
	lev_out = np.squeeze(np.reshape(loc3_copies,(L,1)))
	qc1_out = np.squeeze(np.reshape(qc1_copies,(L,1)))
	qc2_out = np.squeeze(np.reshape(qc2_copies,(L,1)))
	obs_type_out = np.squeeze(np.reshape(obs_type_copies,(L,1)))
	ObsIndex_out = np.squeeze(np.reshape(ObsIndex_copies,(L,1)))



	# for each of the selected obs, report its copystring, ensemble status, and obs type
	copynames_out = []
	for ii in range(len(iobs)):
		for cn in copynames:
			copynames_out.append(cn)


	# round the location values because otherwise pandas f***s up the categorial variable aspect of them
	lat_out = np.round(lat_out,1)
	lon_out = np.round(lon_out,1)
	lev_out = np.round(lev_out)

	# return data frame
	data = {'QualityControl':qc1_out,
		'DARTQualityControl':qc2_out,
		'Value':obs_out,
		'Latitude':lat_out,
		'Longitude':lon_out,
		'Level':lev_out,
		'Date':date_out,
		'CopyName':copynames_out	
		}

	DF = pd.DataFrame(data,index=ObsIndex_out)

	# turn categorical data into categories
	#DF['QualityControl'] = DF['QualityControl'].astype('category')
	#DF['Latitude'] = DF['Latitude'].astype('category')
	#DF['Longitude'] = DF['Longitude'].astype('category')
	#DF['Level'] = DF['Level'].astype('category')
	#DF['CopyName'] = DF['CopyName'].astype('category')

	#return ObsIndex_out, loc1_out, loc2_out, loc3_out, qc_out, obs_out, copynames
	return DF
예제 #2
0
def load_DART_obs_epoch_file(E,date_in=None, hostname='taurus',debug=False):

	"""
	 this function reads in an obs_epoch_XXX.nc file for a certain DART experiment, with the obs that we want 
	 given in obs_type_list, and returns a vector of the desired observation. 

	INPUTS:
	E: an experiment dictionary 
		if E['copystring'] is a list of copystrings, we cycle through them. 
		if one of the strings in E['copystring'] is 'ensemble member', then return all the ensemble members. 
		if E['obs_name'] is a list of observation types, we cycle through and load them all. 
	date: the date on which we want to load the obs 
		the default for this is None -- in this case, just choose the first entry of E['daterange']
	hostname: computer name - default is Taurus 
	debug: debugging flag; default is False. 

	"""
	# select the date 
	if date_in is None:
		date_in = E['daterange'][0]

	# find the directory for this run   
	# this requires running a subroutine called `find_paths`, stored in a module `experiment_datails`, 
	# but written my each user -- it should take an experiment dictionary and the hostname 
	# as input, and return as output 
	# the filepath that corresponds to the desired field, diagnostic, etc. 
	filename = es.find_paths(E,date_in,hostname=hostname,file_type='obs_epoch',debug=debug)
	if not os.path.exists(filename):
		if debug:
			print("+++cannot find files that look like  "+filename+' -- returning None')
		return None,None

	# load the file and select the observation we want
	else:
		f = Dataset(filename,'r')
		if debug:
			print('Loading file '+filename)
		observations = f.variables['observations'][:]
		time = f.variables['time'][:]
		copy = f.variables['copy'][:]
		location = f.variables['location'][:]
		CopyMetaData = f.variables['CopyMetaData'][:]
		ObsTypesMetaData = f.variables['ObsTypesMetaData'][:]
		obs_type = f.variables['obs_type'][:]
		QCMetaData_array = f.variables['QCMetaData'][:]
		qc = f.variables['qc'][:]
		qc_copy = f.variables['qc_copy'][:]
		
		# find the obs_type number corresponding to the desired observations
		if type(E['obs_name']) is list:
			obs_type_no_list = []
			for obs_type_string in E['obs_name']:
				# note that obs_type_string could have weird spaces around it -- strip those off here
				obs_type_no_list.append(get_obs_type_number(f,obs_type_string.rstrip()))
		else:
			obs_type_no = get_obs_type_number(f,E['obs_name'].rstrip())
			obs_type_no_list = [obs_type_no]
		
		if type(E['copystring']) is not list:
			# if E['copystring'] is not a list and not 'ensemble', 
			# we only have one copy number to get -- cc tells us the number of it 
			# note also the prior and posterio diagnostics are not available for everything, i.e observations themselves
			if 'observation' in E['copystring']:
				cc = get_copy(f,E['copystring'])
			else:
				diagn = E['diagn']
				cc = get_copy(f,diagn.lower()+' '+E['copystring'])

		else:
			# if we have to retrieve more than one copy, 
			# expand "CopyMetaData" into lists that hold ensemble status and diagnostic
			diagn = []
			ens_status = []
			CMD = []
			for icopy in copy:
				temp = CopyMetaData[icopy-1,].tostring()
				CMD.append(temp.rstrip())

				if 'prior' in temp:
					diagn.append('Prior')
				if 'posterior' in temp:
					diagn.append('Posterior')
				if 'truth' in temp:
					diagn.append('Truth')
					ens_status.append('Truth')
				if 'observation' in temp:
					diagn.append('')
					ens_status.append('Observation')
				if 'ensemble member' in temp:
					ens_status.append('ensemble member')
				if 'ensemble mean' in temp:
					ens_status.append('ensemble mean')
				if 'ensemble spread' in temp:
					ens_status.append('ensemble spread')
				if 'observation error variance' in temp:
					ens_status.append(None)
					diagn.append(None)
			
		f.close()

	#------locations, quality control, and observation codes for requested obs types 

	# empty lists to hold various traits of the observations that fit the requested obs types
	iobs=[]
	iensstatus=[]
	obs_codes = []
	lons = []
	lats = []
	levs = []

	# create a dictionary to hold all available Quality Control flags
	QCMetaData = [QCMD.tostring() for QCMD in QCMetaData_array]
	QCdict = {k:[] for k in QCMetaData}


	# loop over all obs and store the relevant obs for the ones where the type code matches the request
	if debug:
		print('this is the list of obs type numbers')
		print(obs_type_no_list)
	for OTN in obs_type_no_list:
		itemp = np.where(obs_type == OTN)	# observation numbers of all obs that fit this obs type 
		if itemp is not None:
			if debug:
				temp = ObsTypesMetaData[OTN-1,:].tostring()
				print('these obs indices match obs of type '+temp.decode('UTF-8'))
				print(np.squeeze(itemp))
			iobs.append(list(np.squeeze(itemp)))
			obs_codes.append(np.squeeze(obs_type[itemp]))
			lons.append(np.squeeze(location[itemp,0]))
			lats.append(np.squeeze(location[itemp,1]))
			levs.append(np.squeeze(location[itemp,2]))

			# loop over all available QC flags and store in a list, then a dict
			# note that DART QC copies start at 1, but python indices start at 0
			for iqc,qcname in zip(qc_copy,QCMetaData):
				QCdict[qcname].append(np.squeeze(qc[itemp,iqc-1]))


	# we now have several lists (as many as the number of obs types we requested)
	#  of lists --> turn them into a single list of indices
	iobs2 = [ii for sublist in iobs for ii in sublist]
	obs_codes_list = [ii for sublist in obs_codes for ii in sublist]
	lons_list = [ii for sublist in lons for ii in sublist]
	lats_list = [ii for sublist in lats for ii in sublist]
	levs_list = [ii for sublist in levs for ii in sublist]
	for qcname in QCMetaData:
		old_list = QCdict[qcname]
		new_list = [ii for sublist in old_list for ii in sublist]
		QCdict[qcname] = new_list
	if debug:
		print('retrieving '+str(len(iobs2))+' observations')

	# instead of obs number codes, return strings that identify the obs
	obs_names_out = [ObsTypesMetaData[obs_code-1].tostring() for obs_code in obs_codes_list]

	#------observation values for requested copies of the requested observations

	if type(E['copystring']) is not list:
		# in this case only a single copy, which is defined in E, is returned
		obs_out = observations[iobs2,cc]
		copy_names = E['diagn'].lower()+' '+E['copystring']
	else:
		# in this case several copies are returned
		for CS in E['copystring']:

			# ensemble member names are stored weirdly in DART output -- convert here
			if 'ensemble member ' in CS:
				import re
				ensindex = re.sub(r'ensemble member*','',CS).strip()
				if int(ensindex) < 10:
					spacing = '      '
				else:
					spacing = '     '
				CS = "ensemble member"+spacing+str(ensindex)		
			if debug:
				print('looking for copy '+CS)
			if CS is 'ensemble':
				# in this case look for all the copies that have ensemble status = "ensemble member"	
				indices = [i for i, x in enumerate(ens_status) if x == 'ensemble member']
			else:
				# for all other copystrings, just look for the CopyMetaData entries that contrain that copystring
				indices = [i for i, x in enumerate(CMD) if CS in x]
			if debug:
				print('here are the copy indices that fit this copystring')
				print(indices)
			iensstatus.extend(indices)
		iensstatus.sort()	# this is the list of copies with the right ensemble status
		idiagn = [i for i,x in enumerate(diagn) if x == E['diagn']]	# this is the list of copies with the right diagnostic
		if debug:
			print('here are the copy indices that fit the requested diagnostic')
			print(idiagn)

		# we are interested in the indices that appear in both iensstatus and idiagn
		sdiagn = set(idiagn)
		jj = [val for val in iensstatus if val in sdiagn]
		if debug:
			print('here are the copy indices that fit both the requested copystrings and the requested diagnostic')
			print(jj)
			print('this corresponds to the following:')
			for j in jj:
				print(CMD[j])

		# now select the observations corresponding to these copies 
		obs1 = observations[iobs2,:]
		obs2 = obs1[:,jj]
		obs_out = obs2
		copy_names = [ CMD[i] for i in jj ]

	return obs_out,copy_names,obs_names_out,lons_list,lats_list,levs_list,QCdict
예제 #3
0
def load_DART_diagnostic_file(E,date=datetime.datetime(2009,1,1,1,0,0),hostname='taurus',debug=False):

	# if debugging, print out what we're doing  
	if debug:
		print('+++++++++++++++++++++++++++++++++++++++++')
		print("Retrieving experiment "+E['exp_name'])
		print("for diagnostic "+E['diagn'])
		print("variable "+E['variable'])
		print("copy "+E['copystring'])
		if isinstance(date,str):
			datestr=date
		else:
			datestr = date.strftime("%Y-%m-%d")
		print("and date "+datestr)
		print('+++++++++++++++++++++++++++++++++++++++++')


	# retrieve the entries of the experiment dictionary, E:
	variable = E['variable']
	experiment = E['exp_name']

	# a list of 2d variables -- if the var is 2d, don't need to load vertical levels 
	# TODO: add other 2d variables to this list 
	variables_2d = ['PS','ptrop','ztrop']

	# find the directory for this run   
	# this requires running a subroutine called `find_paths`, stored in a module `experiment_datails`, 
	# but written my each user -- it should take an experiment dictionary and the hostname 
	# as input, and return as output 
	# the filepath that corresponds to the desired field, diagnostic, etc. 
	filename = es.find_paths(E,date,'diag',hostname=hostname,debug=debug)
	if not os.path.exists(filename):
		if debug:
			print("+++cannot find files that look like  "+filename+' -- returning None')
		return None,None,None,None,None,None,None
	else:
		if debug:
			print('opening file  '+filename)
		f = Dataset(filename,'r')
		if variable in variables_2d:
			# don't need info about hybrid model levels if the variable is 2d
			lev=None
			P0=None
			hybm=None
			hyam=None
		else:
			# TODO: add a check so that hybrid model level info is only loaded 
			# for models with hybrid vertical levels 
			lev = f.variables['lev'][:]
			P0 = f.variables['P0'][:]
			hybm = f.variables['hybm'][:]
			hyam = f.variables['hyam'][:]

		# load CopyMetaData if availabe
		if 'CopyMetaData' in f.variables:
			CMD = f.variables['CopyMetaData'][:]
			CMD = f.variables['CopyMetaData'][:]
			CopyMetaData = []
			for ii in range(0,len(CMD)):
				temp = CMD[ii,].tostring().decode("utf-8")
				CopyMetaData.append(temp.rstrip())
		else:
			# if it's not available, look it up for that experiment 
			CopyMetaData = es.get_expt_CopyMetaData_state_space(E)


		# load the requested dynamical variable  - these can have different names, so 
		# first check if the requested variable, and if it's not found, try alternatives 
		if E['variable'] in f.variables:
			varname_load=E['variable']
		else:
			# here is a dictionary that holds alternative variable names to try
			possible_varnames_dict={'T':['t','var130'],
						'TS':['t','var130'],
						'U':['u','var131'],
						'US':['u','var131'],
						'V':['v','var132'],
						'VS':['v','var132'],
						'Z':['z','var129'],
						'geopotential':['z','var129'],
						'GPH':['Z','z','var129'],
						'var129':['Z','z','var129'],
						'msl':['var151'],
						'mslp':['var151'],
						'ztrop':['ptrop'],
						'Nsq':['brunt']}

			possible_varnames_list=possible_varnames_dict[E['variable']]
			for varname in possible_varnames_list:
				if varname in f.variables:
					varname_load = varname
			
			# if the desired variable is still not found, throw an error and abort 
			if 'varname_load' not in locals():
				print('Unable to find variable '+E['variable']+' in file '+filename)

		# change the prefactor for certain variables 
		prefac=1.0	# a prefactor that can be changed for loading some variables 

		# now actually load the variable, and replace its bad 
		# values with NaNs
		V = f.variables[varname_load]
		VV = prefac*V[:]
		if hasattr(V,'_FillValue'):
				VV[VV==V._FillValue]=np.nan

		if (variable=='US'):
			lat = f.variables['slat'][:]
		else:
			lat = f.variables['lat'][:]
		if (variable=='VS'):
			lon = f.variables['slon'][:]
		else:
			lon = f.variables['lon'][:]

		#------finding which copies to retrieve  
		if type(E['copystring']) is not list:
			copies = None

			# if the diagnostic is the Truth, then the copy string can only be one thing
			if (E['diagn'] == 'Truth'):
				copies = get_copy(f,CopyMetaData,'true state')
			# if we want the ensemble variance or std, copystring has to be the ensemble spread
			if (E['extras'] == 'ensemble variance') or (E['extras'] == 'ensemble variance scaled') or (E['extras'] == 'ensemble std'):
				copies = get_copy(f,CopyMetaData,'ensemble spread')
			# if requesting the entire ensemble, loop over ensemble members here 
			if E['copystring'] is 'ensemble':
				#copies = [get_copy(f,cs.tostring().decode("utf-8") ) for cs in CopyMetaData if 'ensemble member' in cs.tostring().decode("utf-8")]
				copies = [get_copy(f,CopyMetaData,cs) for cs in CopyMetaData if 'ensemble member' in cs]

			# if none of the above apply, just choose whatever is in copystring 
			if copies is None:
				copies = [get_copy(f,CopyMetaData,E['copystring'],debug=debug)]
		else:
			# if E['copystring'] is a list, loop through it and find the copies to load 
			for CS in E['copystring']:
				if CS is 'ensemble':
					# in this case look for all the copies that have ensemble status = "ensemble member"	
					copies = [get_copy(f,CopyMetaData,cs) for cs in CopyMetaData if 'ensemble member' in cs]
				else:
					# for all other copystrings, just look for the CopyMetaData entries that contrain that copystring
					copies = [get_copy(f,CopyMetaData,cstring) for cstring in CopyMetaData if cstring==CS]

		#------finding which copies to retrieve  

		# figure out which vertical level range we want
		if variable in variables_2d:
			lev2 = None
		else:
			levrange=E['levrange']
			k1 = (np.abs(lev-levrange[1])).argmin()
			k2 = (np.abs(lev-levrange[0])).argmin()
			lev2 = lev[k1:k2+1]

		# figure out which latitude range we want
		latrange=E['latrange']
		j2 = (np.abs(lat-latrange[1])).argmin()
		j1 = (np.abs(lat-latrange[0])).argmin()
		lat2 = lat[j1:j2+1]

		# figure out which longitude range we want
		lonrange=E['lonrange']
		i2 = (np.abs(lon-lonrange[1])).argmin()
		i1 = (np.abs(lon-lonrange[0])).argmin()
		lon2 = lon[i1:i2+1]


		if variable in variables_2d:
			VV2 = VV[0,copies,j1:j2+1,i1:i2+1]
		else:
			VV2 = VV[0,copies,j1:j2+1,i1:i2+1,k1:k2+1]

		#------------extra computations  

		# if tropopause altitude (ztrop) was requested, we retrieved tropopause pressure -- 
		# convert it here 
		if E['variable']=='ztrop':
			H = 7.0		# 7 km scale height 
			if np.max(VV2) > 1000.0:   # in this case, pressure is in Pa 
				P0 = 1.0E5
			else:
				P0 = 1.0E3
			VVpress = VV2
			VV2 = H*np.log(P0/VVpress)
				

		# if the ensemble variance was requested, square it here
		if (E['extras'] == 'ensemble variance'): 
			VVout = np.square(VV2)

		# if the copystring is ensemble variance scaled, square the ensemble spread and scale by ensemble size
		if (E['extras'] == 'ensemble variance scaled'):
			if debug:
				print('squaring and scaling ensemble spread to get scaled variance')
			N = get_ensemble_size(f)
			fac = (N+1)/N
			VVout = fac*np.square(VV2)
		else:
			VVout = VV2

		# close the primary file  
		f.close()

		# if requestiing the mean square error (MSE), load the corresponding truth run and subtract it out, then square  
		if (E['extras'] == 'MSE'):
			Etr = E.copy()
			Etr['diagn'] = 'Truth'
			filename_truth = es.find_paths(Etr,date,'truth',hostname=hostname,debug=debug)
			if not os.path.exists(filename):
				print("+++cannot find files that look like  "+filename_truth+' -- returning None')
				return None,None,None,None,None,None,None
			else:
				if debug:
					print('opening file  '+filename_truth)

			# open the truth file and load the field
			ft = Dataset(filename_truth,'r')
			VT = ft.variables[variable]

			# select the true state as the right copy
			copyt = get_copy(ft,'true state',debug)
			if (variable=='PS'):
				VT2 = VT[0,copy,j1:j2+1,i1:i2+1]
			else:
				VT2 = VT[0,copy,j1:j2+1,i1:i2+1,k1:k2+1]

			# close the truth file
			ft.close()

			# compute the square error
			SE = np.square(VV2-VT2)
			VVout = SE

	return lev2,lat2,lon2,VVout,P0,hybm,hyam
예제 #4
0
def load_covariance_file(E,date,hostname='taurus',debug=False):

	"""
	this subroutine loads in a pre-computed file of state-to-observation covariances and correlations.
	the state variable is given by E['variable']
	the observation is given by E['obs_name']
	"""

	# find the directory for this run   
	# this requires running a subroutine called `find_paths`, stored in a module `experiment_datails`, 
	# but written my each user -- it should take an experiment dictionary and the hostname 
	# as input, and return as output 
	# the filepath that corresponds to the desired field, diagnostic, etc. 
	filename = es.find_paths(E,date,file_type='covariance',hostname=hostname)
	if not os.path.exists(filename):
		if debug:
			print("+++cannot find files that look like  "+filename+' -- returning None')
		return None, None, None, None, None

	# load the netcdf file 
	f = Dataset(filename,'r')
	lat = f.variables['lat'][:]
	lon = f.variables['lon'][:]
	if E['variable']!='PS':
		lev = f.variables['lev'][:]
	time = f.variables['time'][:]
	Correlation = f.variables['Correlation'][:]
	Covariance = f.variables['Covariance'][:]
	f.close()

	# squeeze out the time dimension -- for now. Might make this longer than 1 later
	# also select the right level, lat, and lon ranges
	# figure out which vertical level range we want
	if E['variable'] !='PS':
		levrange=E['levrange']
		k1 = (np.abs(lev-levrange[1])).argmin()
		k2 = (np.abs(lev-levrange[0])).argmin()
		lev2 = lev[k1:k2+1]

	# figure out which latitude range we want
	latrange=E['latrange']
	j2 = (np.abs(lat-latrange[1])).argmin()
	j1 = (np.abs(lat-latrange[0])).argmin()
	lat2 = lat[j1:j2+1]

	# figure out which longitude range we want
	lonrange=E['lonrange']
	i2 = (np.abs(lon-lonrange[1])).argmin()
	i1 = (np.abs(lon-lonrange[0])).argmin()
	lon2 = lon[i1:i2+1]

	if E['variable']=='PS':
		R = np.squeeze(Correlation[j1:j2+1,i1:i2+1,0])
		C = np.squeeze(Covariance[j1:j2+1,i1:i2+1,0])
		lev2 = None
	else:
		R = np.squeeze(Correlation[j1:j2+1,i1:i2+1,k1:k2+1,0])
		C = np.squeeze(Covariance[j1:j2+1,i1:i2+1,k1:k2+1,0])

	# return covariance and correlation grids 
	return  lev2, lat2, lon2, C, R
예제 #5
0
파일: DART.py 프로젝트: timhoar/DARTpy
def load_DART_diagnostic_file(E,
                              date=datetime.datetime(2009, 1, 1, 1, 0, 0),
                              hostname='taurus',
                              debug=False,
                              return_single_variables=False):
    """
	Read a DART diagnostic netcdf file (e.g. files with names like modelname_Prior_Diagn.nc, etc)
	for a single data/time 
	and for the variable and experiment specified in the experiment dictionary E. 

	This code returns a dictionary, Dout, which holds the requested variable, its corresponding 
	spacial dimension arrays (e.g. lat, lon, lev), units, and long name. 
	To get  these as single variables, set the input parameter return_single_variables to True. This will be 
	deprecated eventually when all other visualization codes are changed to deal with single variables.  
	"""

    # if debugging, print out what we're doing
    if debug:
        print('+++++++++++++++++++++++++++++++++++++++++')
        print("Retrieving experiment " + E['exp_name'])
        print("for diagnostic " + E['diagn'])
        print("variable " + E['variable'])
        if isinstance(date, str):
            datestr = date
        else:
            datestr = date.strftime("%Y-%m-%d")
        print("and date " + datestr)
        print('+++++++++++++++++++++++++++++++++++++++++')

    # retrieve the entries of the experiment dictionary, E:
    variable = E['variable']
    experiment = E['exp_name']

    # a list of 2d variables -- if the var is 2d, don't need to load vertical levels
    # TODO: add other 2d variables to this list
    variables_2d = ['PS', 'ptrop', 'ztrop']

    # this is the dictionary that holds the output
    if not return_single_variables:
        Dout = dict()

    # find the directory for this run
    # this requires running a subroutine called `find_paths`, stored in a module `experiment_datails`,
    # but written my each user -- it should take an experiment dictionary and the hostname
    # as input, and return as output
    # the filepath that corresponds to the desired field, diagnostic, etc.
    filename = es.find_paths(E, date, 'diag', hostname=hostname, debug=debug)
    if not os.path.exists(filename):
        raise RuntimeError(
            "load_DART_diagn_file can't find files that look like  " +
            filename)

        #if debug:
        #	print("+++cannot find files that look like  "+filename+' -- returning None')
        #if return_single_variables:
    #		return None,None,None,None,None,None,None
    #else:
    #	Dout['data']=None
    #	return Dout
    else:
        if debug:
            print('opening file  ' + filename)
        f = Dataset(filename, 'r')
        if variable in variables_2d:
            # don't need info about hybrid model levels if the variable is 2d
            lev = None
            P0 = None
            hybm = None
            hyam = None
        else:
            # TODO: add a check so that hybrid model level info is only loaded
            # for models with hybrid vertical levels
            lev = f.variables['lev'][:]
            P0 = f.variables['P0'][:]
            hybm = f.variables['hybm'][:]
            hyam = f.variables['hyam'][:]

        # load CopyMetaData if availabe
        if 'CopyMetaData' in f.variables:
            CMD = f.variables['CopyMetaData'][:]
            CopyMetaData = []
            for ii in range(0, len(CMD)):
                temp = CMD[ii, ].tostring().decode("utf-8")
                CopyMetaData.append(temp.rstrip())
        else:
            # if it's not available, look it up for that experiment
            CopyMetaData = es.get_expt_CopyMetaData_state_space(E)

        # load the requested dynamical variable  - these can have different names, so
        # first check if the requested variable, and if it's not found, try alternatives
        if E['variable'] in f.variables:
            varname_load = E['variable']
        else:
            # here is a dictionary that holds alternative variable names to try
            possible_varnames_dict = {
                'T': ['t', 'var130'],
                'TS': ['t', 'var130'],
                'U': ['u', 'var131'],
                'US': ['u', 'var131'],
                'V': ['v', 'var132'],
                'VS': ['v', 'var132'],
                'Z': ['z', 'var129'],
                'geopotential': ['z', 'var129'],
                'GPH': ['Z', 'z', 'var129'],
                'var129': ['Z', 'z', 'var129'],
                'msl': ['var151'],
                'mslp': ['var151'],
                'ztrop': ['ptrop'],
                'Nsq': ['brunt']
            }

            possible_varnames_list = possible_varnames_dict[E['variable']]
            for varname in possible_varnames_list:
                if varname in f.variables:
                    varname_load = varname

            # if the desired variable is still not found, throw an error and abort
            if 'varname_load' not in locals():
                print('Unable to find variable ' + E['variable'] +
                      ' in file ' + filename)

        # now actually load the variable, and replace its bad
        # values with NaNs
        V = f.variables[varname_load]

        if (variable == 'US'):
            lat = f.variables['slat'][:]
        else:
            lat = f.variables['lat'][:]
        if (variable == 'VS'):
            lon = f.variables['slon'][:]
        else:
            lon = f.variables['lon'][:]

        #------finding which copies to retrieve
        if type(E['copystring']) is not list:
            copies = None

            # if the diagnostic is the Truth, then the copy string can only be one thing
            if (E['diagn'] == 'Truth'):
                copies = get_copy(f, CopyMetaData, 'true state')
            # if we want the ensemble variance or std, copystring has to be the ensemble spread
            if (E['extras'] == 'ensemble variance') or (
                    E['extras']
                    == 'ensemble variance scaled') or (E['extras']
                                                       == 'ensemble std'):
                copies = get_copy(f, CopyMetaData, 'ensemble spread')
            # if requesting the entire ensemble, find the copies that contain the string 'ensemble member'
            if E['copystring'] is 'ensemble':
                copies = [
                    get_copy(f, CopyMetaData, cs) for cs in CopyMetaData
                    if 'ensemble member' in cs
                ]

            # we can also request a sample of the total ensemble
            if 'ensemble sample' in E['copystring']:
                copies2 = [
                    get_copy(f, CopyMetaData, cs) for cs in CopyMetaData
                    if 'ensemble member' in cs
                ]
                try:
                    n = int(E['copystring'].split(' ')[2])
                except ValueError:
                    print('Warning: the copystring ' + E['copystring'] +
                          ' isnt valid. Returning 2 ensemble members instead.')
                    n = 2
                    pass
                copies = np.random.choice(copies2, size=n, replace=False)

            # if none of the above apply, just choose whatever is in copystring
            if copies is None:
                copies = [
                    get_copy(f, CopyMetaData, E['copystring'], debug=debug)
                ]
        else:
            copies = [
                get_copy(f, CopyMetaData, cstring)
                for cstring in E['copystring']
            ]

        #------done finding which copies to retrieve

        # initialize output directory and record the variable's metadata.
        try:
            Dout['units'] = V.units
        except AttributeError:
            Dout['units'] = ''
        try:
            Dout['long_name'] = V.long_name
        except AttributeError:
            Dout['long_name'] = ''

        # figure out which vertical level range we want
        if variable in variables_2d:
            lev2 = None
        else:
            levrange = E['levrange']
            k1 = (np.abs(lev - levrange[1])).argmin()
            k2 = (np.abs(lev - levrange[0])).argmin()
            lev2 = lev[k1:k2 + 1]

        # figure out which latitude range we want
        latrange = E['latrange']
        j2 = (np.abs(lat - latrange[1])).argmin()
        j1 = (np.abs(lat - latrange[0])).argmin()
        lat2 = lat[j1:j2 + 1]

        # figure out which longitude range we want
        lonrange = E['lonrange']
        i2 = (np.abs(lon - lonrange[1])).argmin()
        i1 = (np.abs(lon - lonrange[0])).argmin()
        lon2 = lon[i1:i2 + 1]

        # now read in only the part of the variable within the lat, lon, and lev bounds
        # note that this assumes output shaped like time x copy x lat x lon x lev
        # TODO: is there away to make this more agnostic?
        # note also that we only choose the first time -- this works well with DART output
        # that have one time instance in each file, only. Again, another TODO woul dbe to make
        # this more grid-agnostic.
        if variable in variables_2d:
            VV = V[0, copies, j1:j2 + 1, i1:i2 + 1]
        else:
            VV = V[0, copies, j1:j2 + 1, i1:i2 + 1, k1:k2 + 1]

        # also record the netcdf fill value in the array
        if hasattr(V, '_FillValue'):
            VV = np.ma.masked_values(VV, V._FillValue)
            Dout['FillValue'] = V._FillValue

        # close the primary file
        f.close()

        #------------extra computations

        # if tropopause altitude (ztrop) was requested, we retrieved tropopause pressure --
        # convert it here
        if E['variable'] == 'ztrop':
            H = 7.0  # 7 km scale height
            if np.max(VV) > 1000.0:  # in this case, pressure is in Pa
                P0 = 1.0E5
            else:
                P0 = 1.0E3
            VVpress = VV
            VV = H * np.log(P0 / VVpress)

        # if the ensemble variance was requested, square it here
        if (E['extras'] == 'ensemble variance'):
            VVout = np.square(VV)

        # if the copystring is ensemble variance scaled, square the ensemble spread and scale by ensemble size
        if (E['extras'] == 'ensemble variance scaled'):
            if debug:
                print(
                    'squaring and scaling ensemble spread to get scaled variance'
                )
            N = get_ensemble_size(f)
            fac = (N + 1) / N
            VVout = fac * np.square(VV)
        else:
            VVout = VV

        # if requestiing the mean square error (MSE), load the corresponding truth run and subtract it out, then square
        if (E['extras'] == 'MSE'):
            Etr = E.copy()
            Etr['diagn'] = 'Truth'
            filename_truth = es.find_paths(Etr,
                                           date,
                                           'truth',
                                           hostname=hostname,
                                           debug=debug)
            if not os.path.exists(filename):
                print("+++cannot find files that look like  " +
                      filename_truth + ' -- returning None')
                return None, None, None, None, None, None, None
            else:
                if debug:
                    print('opening file  ' + filename_truth)

            # open the truth file and load the field
            ft = Dataset(filename_truth, 'r')
            VT = ft.variables[variable]

            # select the true state as the right copy
            copyt = get_copy(ft, 'true state', debug)
            if (variable == 'PS'):
                VT2 = VT[0, copy, j1:j2 + 1, i1:i2 + 1]
            else:
                VT2 = VT[0, copy, j1:j2 + 1, i1:i2 + 1, k1:k2 + 1]

            # close the truth file
            ft.close()

            # compute the square error
            SE = np.square(VV2 - VT2)
            VVout = SE

    if return_single_variables:
        return lev2, lat2, lon2, VVout, P0, hybm, hyam
    else:
        Dout['data'] = VVout
        Dout['lev'] = lev2
        Dout['lat'] = lat2
        Dout['lon'] = lon2
        Dout['P0'] = P0
        Dout['hybm'] = hybm
        Dout['hyam'] = hyam
        return (Dout)
예제 #6
0
파일: DART.py 프로젝트: timhoar/DARTpy
def load_DART_obs_epoch_file(E, date_in=None, hostname='taurus', debug=False):
    """
	 this function reads in an obs_epoch_XXX.nc file for a certain DART experiment, with the obs that we want 
	 given in obs_type_list, and returns a vector of the desired observation. 

	INPUTS:
	E: an experiment dictionary 
		if E['copystring'] is a list of copystrings, we cycle through them. 
		if one of the strings in E['copystring'] is 'ensemble member', then return all the ensemble members. 
		if E['obs_name'] is a list of observation types, we cycle through and load them all. 
	date: the date on which we want to load the obs 
		the default for this is None -- in this case, just choose the first entry of E['daterange']
	hostname: computer name - default is Taurus 
	debug: debugging flag; default is False. 

	"""
    # select the date
    if date_in is None:
        date_in = E['daterange'][0]

    # find the directory for this run
    # this requires running a subroutine called `find_paths`, stored in a module `experiment_datails`,
    # but written my each user -- it should take an experiment dictionary and the hostname
    # as input, and return as output
    # the filepath that corresponds to the desired field, diagnostic, etc.
    filename = es.find_paths(E,
                             date_in,
                             hostname=hostname,
                             file_type='obs_epoch',
                             debug=debug)
    if not os.path.exists(filename):
        if debug:
            print("+++cannot find files that look like  " + filename +
                  ' -- returning None')
        return None, None

    # load the file and select the observation we want
    else:
        f = Dataset(filename, 'r')
        if debug:
            print('Loading file ' + filename)
        observations = f.variables['observations'][:]
        time = f.variables['time'][:]
        copy = f.variables['copy'][:]
        location = f.variables['location'][:]
        CopyMetaData = f.variables['CopyMetaData'][:]
        ObsTypesMetaData = f.variables['ObsTypesMetaData'][:]
        obs_type = f.variables['obs_type'][:]
        QCMetaData_array = f.variables['QCMetaData'][:]
        qc = f.variables['qc'][:]
        qc_copy = f.variables['qc_copy'][:]

        # find the obs_type number corresponding to the desired observations
        if type(E['obs_name']) is list:
            obs_type_no_list = []
            for obs_type_string in E['obs_name']:
                # note that obs_type_string could have weird spaces around it -- strip those off here
                obs_type_no_list.append(
                    get_obs_type_number(f, obs_type_string.rstrip()))
        else:
            obs_type_no = get_obs_type_number(f, E['obs_name'].rstrip())
            obs_type_no_list = [obs_type_no]

        if type(E['copystring']) is not list:
            # if E['copystring'] is not a list and not 'ensemble',
            # we only have one copy number to get -- cc tells us the number of it
            # note also the prior and posterio diagnostics are not available for everything, i.e observations themselves
            if 'observation' in E['copystring']:
                cc = get_copy(f, E['copystring'])
            else:
                diagn = E['diagn']
                cc = get_copy(f, diagn.lower() + ' ' + E['copystring'])

        else:
            # if we have to retrieve more than one copy,
            # expand "CopyMetaData" into lists that hold ensemble status and diagnostic
            diagn = []
            ens_status = []
            CMD = []
            for icopy in copy:
                temp = CopyMetaData[icopy - 1, ].tostring()
                CMD.append(temp.rstrip())

                if 'prior' in temp:
                    diagn.append('Prior')
                if 'posterior' in temp:
                    diagn.append('Posterior')
                if 'truth' in temp:
                    diagn.append('Truth')
                    ens_status.append('Truth')
                if 'observation' in temp:
                    diagn.append('')
                    ens_status.append('Observation')
                if 'ensemble member' in temp:
                    ens_status.append('ensemble member')
                if 'ensemble mean' in temp:
                    ens_status.append('ensemble mean')
                if 'ensemble spread' in temp:
                    ens_status.append('ensemble spread')
                if 'observation error variance' in temp:
                    ens_status.append(None)
                    diagn.append(None)

        f.close()

    #------locations, quality control, and observation codes for requested obs types

    # empty lists to hold various traits of the observations that fit the requested obs types
    iobs = []
    iensstatus = []
    obs_codes = []
    lons = []
    lats = []
    levs = []

    # create a dictionary to hold all available Quality Control flags
    QCMetaData = [QCMD.tostring() for QCMD in QCMetaData_array]
    QCdict = {k: [] for k in QCMetaData}

    # loop over all obs and store the relevant obs for the ones where the type code matches the request
    if debug:
        print('this is the list of obs type numbers')
        print(obs_type_no_list)
    for OTN in obs_type_no_list:
        itemp = np.where(
            obs_type ==
            OTN)  # observation numbers of all obs that fit this obs type
        if itemp is not None:
            if debug:
                temp = ObsTypesMetaData[OTN - 1, :].tostring()
                print('these obs indices match obs of type ' +
                      temp.decode('UTF-8'))
                print(np.squeeze(itemp))
            iobs.append(list(np.squeeze(itemp)))
            obs_codes.append(np.squeeze(obs_type[itemp]))
            lons.append(np.squeeze(location[itemp, 0]))
            lats.append(np.squeeze(location[itemp, 1]))
            levs.append(np.squeeze(location[itemp, 2]))

            # loop over all available QC flags and store in a list, then a dict
            # note that DART QC copies start at 1, but python indices start at 0
            for iqc, qcname in zip(qc_copy, QCMetaData):
                QCdict[qcname].append(np.squeeze(qc[itemp, iqc - 1]))

    # we now have several lists (as many as the number of obs types we requested)
    #  of lists --> turn them into a single list of indices
    iobs2 = [ii for sublist in iobs for ii in sublist]
    obs_codes_list = [ii for sublist in obs_codes for ii in sublist]
    lons_list = [ii for sublist in lons for ii in sublist]
    lats_list = [ii for sublist in lats for ii in sublist]
    levs_list = [ii for sublist in levs for ii in sublist]
    for qcname in QCMetaData:
        old_list = QCdict[qcname]
        new_list = [ii for sublist in old_list for ii in sublist]
        QCdict[qcname] = new_list
    if debug:
        print('retrieving ' + str(len(iobs2)) + ' observations')

    # instead of obs number codes, return strings that identify the obs
    obs_names_out = [
        ObsTypesMetaData[obs_code - 1].tostring()
        for obs_code in obs_codes_list
    ]

    #------observation values for requested copies of the requested observations

    if type(E['copystring']) is not list:
        # in this case only a single copy, which is defined in E, is returned
        obs_out = observations[iobs2, cc]
        copy_names = E['diagn'].lower() + ' ' + E['copystring']
    else:
        # in this case several copies are returned
        for CS in E['copystring']:

            # ensemble member names are stored weirdly in DART output -- convert here
            if 'ensemble member ' in CS:
                import re
                ensindex = re.sub(r'ensemble member*', '', CS).strip()
                if int(ensindex) < 10:
                    spacing = '      '
                else:
                    spacing = '     '
                CS = "ensemble member" + spacing + str(ensindex)
            if debug:
                print('looking for copy ' + CS)
            if CS is 'ensemble':
                # in this case look for all the copies that have ensemble status = "ensemble member"
                indices = [
                    i for i, x in enumerate(ens_status)
                    if x == 'ensemble member'
                ]
            else:
                # for all other copystrings, just look for the CopyMetaData entries that contrain that copystring
                indices = [i for i, x in enumerate(CMD) if CS in x]
            if debug:
                print('here are the copy indices that fit this copystring')
                print(indices)
            iensstatus.extend(indices)
        iensstatus.sort(
        )  # this is the list of copies with the right ensemble status
        idiagn = [i for i, x in enumerate(diagn) if x == E['diagn']
                  ]  # this is the list of copies with the right diagnostic
        if debug:
            print(
                'here are the copy indices that fit the requested diagnostic')
            print(idiagn)

        # we are interested in the indices that appear in both iensstatus and idiagn
        sdiagn = set(idiagn)
        jj = [val for val in iensstatus if val in sdiagn]
        if debug:
            print(
                'here are the copy indices that fit both the requested copystrings and the requested diagnostic'
            )
            print(jj)
            print('this corresponds to the following:')
            for j in jj:
                print(CMD[j])

        # now select the observations corresponding to these copies
        obs1 = observations[iobs2, :]
        obs2 = obs1[:, jj]
        obs_out = obs2
        copy_names = [CMD[i] for i in jj]

    return obs_out, copy_names, obs_names_out, lons_list, lats_list, levs_list, QCdict
예제 #7
0
파일: DART.py 프로젝트: timhoar/DARTpy
def load_covariance_file(E, date, hostname='taurus', debug=False):
    """
	this subroutine loads in a pre-computed file of state-to-observation covariances and correlations.
	the state variable is given by E['variable']
	the observation is given by E['obs_name']
	"""

    # find the directory for this run
    # this requires running a subroutine called `find_paths`, stored in a module `experiment_datails`,
    # but written my each user -- it should take an experiment dictionary and the hostname
    # as input, and return as output
    # the filepath that corresponds to the desired field, diagnostic, etc.
    filename = es.find_paths(E,
                             date,
                             file_type='covariance',
                             hostname=hostname)
    if not os.path.exists(filename):
        if debug:
            print("+++cannot find files that look like  " + filename +
                  ' -- returning None')
        return None, None, None, None, None

    # load the netcdf file
    f = Dataset(filename, 'r')
    lat = f.variables['lat'][:]
    lon = f.variables['lon'][:]
    if E['variable'] != 'PS':
        lev = f.variables['lev'][:]
    time = f.variables['time'][:]
    Correlation = f.variables['Correlation'][:]
    Covariance = f.variables['Covariance'][:]
    f.close()

    # squeeze out the time dimension -- for now. Might make this longer than 1 later
    # also select the right level, lat, and lon ranges
    # figure out which vertical level range we want
    if E['variable'] != 'PS':
        levrange = E['levrange']
        k1 = (np.abs(lev - levrange[1])).argmin()
        k2 = (np.abs(lev - levrange[0])).argmin()
        lev2 = lev[k1:k2 + 1]

    # figure out which latitude range we want
    latrange = E['latrange']
    j2 = (np.abs(lat - latrange[1])).argmin()
    j1 = (np.abs(lat - latrange[0])).argmin()
    lat2 = lat[j1:j2 + 1]

    # figure out which longitude range we want
    lonrange = E['lonrange']
    i2 = (np.abs(lon - lonrange[1])).argmin()
    i1 = (np.abs(lon - lonrange[0])).argmin()
    lon2 = lon[i1:i2 + 1]

    if E['variable'] == 'PS':
        R = np.squeeze(Correlation[j1:j2 + 1, i1:i2 + 1, 0])
        C = np.squeeze(Covariance[j1:j2 + 1, i1:i2 + 1, 0])
        lev2 = None
    else:
        R = np.squeeze(Correlation[j1:j2 + 1, i1:i2 + 1, k1:k2 + 1, 0])
        C = np.squeeze(Covariance[j1:j2 + 1, i1:i2 + 1, k1:k2 + 1, 0])

    # return covariance and correlation grids
    return lev2, lat2, lon2, C, R
예제 #8
0
파일: DART.py 프로젝트: timhoar/DARTpy
def load_DART_obs_epoch_file_as_dataframe(E,
                                          date=datetime.datetime(
                                              2009, 1, 1, 0, 0, 0),
                                          obs_type_list=['ERP_PM1', 'ERP_LOD'],
                                          ens_status_list=['ensemble member'],
                                          hostname='taurus',
                                          debug=False):
    """
	 read in a DART obs epoch file, defined by its date and the Experiment E, and return as a Pandas data frame, in which al the observations 
	 that have ensemble status and obs types given in ens_status_list and obs_type_list, respectively, 
	 are ordered according to ObsIndex.  
	 this should eventually replace the SR load_DART_obs_epoch_file  
	"""

    # find the directory for this run
    # this requires running a subroutine called `find_paths`, stored in a module `experiment_datails`,
    # but written my each user -- it should take an experiment dictionary and the hostname
    # as input, and return as output
    # the filepath that corresponds to the desired field, diagnostic, etc.
    filename = es.find_paths(E, date, hostname=hostname)
    if not os.path.exists(filename):
        if debug:
            print("+++cannot find files that look like  " + filename +
                  ' -- returning None')
        return None

    # load the file and select the observation we want
    else:
        f = Dataset(filename, 'r')
        CopyMetaData = f.variables['CopyMetaData'][:]
        ObsTypesMetaData = f.variables['ObsTypesMetaData'][:]
        observations = f.variables['observations'][:]
        time = f.variables['time'][:]
        copy = f.variables['copy'][:]
        obs_type = f.variables['obs_type'][:]
        location = f.variables['location'][:]
        ObsIndex = f.variables['ObsIndex'][:]
        qc = f.variables['qc'][:]

        # find the obs_type number corresponding to the desired observations
        obs_type_no_list = []
        for obs_type_string in obs_type_list:
            obs_type_no_list.append(get_obs_type_number(f, obs_type_string))

        # expand "CopyMetaData" into lists that hold ensemble status and diagnostic
        diagn = []
        ens_status = []
        CMD = []
        # loop over the copy meta data and record the ensemble status and diagnostic for reach copy
        for icopy in copy:
            temp = CopyMetaData[icopy - 1, ].tostring()
            CMD.append(temp.rstrip())

            if 'prior' in temp:
                diagn.append('Prior')
            if 'posterior' in temp:
                diagn.append('Posterior')
            if 'truth' in temp:
                diagn.append('Truth')
                ens_status.append('Truth')
            if 'observations' in temp:
                diagn.append('Observation')
                ens_status.append('Observation')
            if 'ensemble member' in temp:
                ens_status.append('ensemble member')
            if 'ensemble mean' in temp:
                ens_status.append('ensemble mean')
            if 'ensemble spread' in temp:
                ens_status.append('ensemble spread')
            if 'observation error variance' in temp:
                ens_status.append(None)
                diagn.append(None)

        f.close()

    # return the desired observations and copys, and the copy meta data
    #for obs_type_no in obs_type_no_list:
    iobs = []
    iensstatus = []
    if debug:
        print('selecting the following obs type numbers')
        print(obs_type_no_list)
    for OTN in obs_type_no_list:
        itemp = np.where(obs_type == OTN)
        if itemp is not None:
            # itemp is a tuple - the first entry is the list of indices (I know - this is f****d)
            itemp2 = itemp[0]
            # now scoot through itemp2 (which is an ndarray...wtf?) and store the entires in a list
            for i in itemp2:
                iobs.append(i)

    # select the copys correposnind go the right ensemble status (or just copystring if the list isn;t give) and diagnostic
    if ens_status_list is None:
        ens_status_list = []
        ens_status_list.append(E['copystring'])
        if debug:
            print(ens_status_list)

    for ES in ens_status_list:
        indices = [i for i, x in enumerate(ens_status) if x == ES]
        iensstatus.extend(indices)
    iensstatus.sort(
    )  # this is the list of copies with the right ensemble status
    idiagn = [i for i, x in enumerate(diagn) if x == E['diagn']
              ]  # this is the list of copies with the right diagnostic

    # we are interested in the indices that appear in both iensstatus and idiagn
    sdiagn = set(idiagn)
    cc = [val for val in iensstatus if val in sdiagn]
    if debug:
        print(
            'these are the copies that suit both the requested ensemble status and the requested diagnostic:'
        )
        print(cc)

    # given the above copy numbers, find the names that suit them
    copynames = [CMD[ii] for ii in cc]

    # turn the array obs_type from numbers to words
    OT = []
    for ii in obs_type:
        temp = ObsTypesMetaData[ii - 1, ].tostring()
        OT.append(temp)
    # these are the obs types for the observations we select out
    OT_select = [OT[ii] for ii in iobs]

    # now select the observations corresponding to the selected copies and obs types
    i1 = np.array(iobs)
    i2 = np.array(cc)
    obs_select = observations[i1[:, None], i2]
    location_select = location[i1, ]
    obs_type_select = obs_type[i1, ]
    qc1_select = qc[i1, 0]
    qc2_select = qc[i1, 1]
    time_select = time[i1]
    ObsIndex_select = ObsIndex[i1]

    # for the arrays that are only defined by obs index, replicate for each copy
    loc1 = location_select[:, 0]
    loc2 = location_select[:, 1]
    loc3 = location_select[:, 2]
    loc1_copies = np.repeat(loc1[:, np.newaxis], len(i2), 1)
    loc2_copies = np.repeat(loc2[:, np.newaxis], len(i2), 1)
    loc3_copies = np.repeat(loc3[:, np.newaxis], len(i2), 1)
    qc1_copies = np.repeat(qc1_select[:, np.newaxis], len(i2), 1)
    qc2_copies = np.repeat(qc2_select[:, np.newaxis], len(i2), 1)
    obs_type_copies = np.repeat(obs_type_select[:, np.newaxis], len(i2), 1)
    ObsIndex_copies = np.repeat(ObsIndex_select[:, np.newaxis], len(i2), 1)

    # reshape the output from arrays to vectors
    # also have to squeeze out the empty dimension -- this seems really inelegant, but I don't know a better way to do it!
    L = len(iobs) * len(cc)  # length of the data vector
    date_out = np.repeat(date, L)
    obs_out = np.squeeze(np.reshape(obs_select, (L, 1)))
    lon_out = np.squeeze(np.reshape(loc1_copies, (L, 1)))
    lat_out = np.squeeze(np.reshape(loc2_copies, (L, 1)))
    lev_out = np.squeeze(np.reshape(loc3_copies, (L, 1)))
    qc1_out = np.squeeze(np.reshape(qc1_copies, (L, 1)))
    qc2_out = np.squeeze(np.reshape(qc2_copies, (L, 1)))
    obs_type_out = np.squeeze(np.reshape(obs_type_copies, (L, 1)))
    ObsIndex_out = np.squeeze(np.reshape(ObsIndex_copies, (L, 1)))

    # for each of the selected obs, report its copystring, ensemble status, and obs type
    copynames_out = []
    for ii in range(len(iobs)):
        for cn in copynames:
            copynames_out.append(cn)

    # round the location values because otherwise pandas f***s up the categorial variable aspect of them
    lat_out = np.round(lat_out, 1)
    lon_out = np.round(lon_out, 1)
    lev_out = np.round(lev_out)

    # return data frame
    data = {
        'QualityControl': qc1_out,
        'DARTQualityControl': qc2_out,
        'Value': obs_out,
        'Latitude': lat_out,
        'Longitude': lon_out,
        'Level': lev_out,
        'Date': date_out,
        'CopyName': copynames_out
    }

    DF = pd.DataFrame(data, index=ObsIndex_out)

    # turn categorical data into categories
    #DF['QualityControl'] = DF['QualityControl'].astype('category')
    #DF['Latitude'] = DF['Latitude'].astype('category')
    #DF['Longitude'] = DF['Longitude'].astype('category')
    #DF['Level'] = DF['Level'].astype('category')
    #DF['CopyName'] = DF['CopyName'].astype('category')

    #return ObsIndex_out, loc1_out, loc2_out, loc3_out, qc_out, obs_out, copynames
    return DF