def pretrained(self, model_dir): return load_pretrained( self, dataset_name="hiv", model_name=f"mpnn_{self.aggr}", hidden=self.hidden, model_dir=model_dir, pretrained_conf=PRETRAINED_CONF, )
def pretrained(self, model_dir): return load_pretrained( self, dataset_name="arxiv", model_name="pna", hidden=self.hidden, model_dir=model_dir, pretrained_conf=PRETRAINED_CONF, )
def pretrained(self, model_dir): assert not self.use_old_code_dataset return load_pretrained( self, dataset_name="code2", model_name="pna", hidden=self.hidden, model_dir=model_dir, pretrained_conf=PRETRAINED_CONF, )
def pretrained(self, model_dir): assert not self.softmax if len(self.aggrs) == 1: assert "symadd" in self.aggrs assert self.hidden == 236 and self.num_heads == 4 and self.num_bases == 4 model = "egc_s" elif len(self.aggrs) == 3: assert set(self.aggrs).issuperset({"add", "max", "mean"}) assert self.hidden == 224 and self.num_heads == 4 and self.num_bases == 4 model = "egc_m" else: raise ValueError return load_pretrained( self, dataset_name="hiv", model_name=model, hidden=self.hidden, model_dir=model_dir, pretrained_conf=PRETRAINED_CONF, )