def run_experiments_mnist(): n_hiddens = 1024 n_layers = 5 n_comps = 10 act_fun = 'relu' mode = 'sequential' ex.load_data('mnist') ex.train_made([n_hiddens] * 2, act_fun, mode) ex.train_made_cond([n_hiddens] * 2, act_fun, mode) ex.train_mog_made([n_hiddens] * 2, act_fun, n_comps, mode) ex.train_mog_made_cond([n_hiddens] * 2, act_fun, n_comps, mode) for i in [1, 2]: ex.train_realnvp([n_hiddens] * 2, 'tanh', 'relu', n_layers * i) ex.train_realnvp_cond([n_hiddens] * 2, 'tanh', 'relu', n_layers * i) ex.train_maf([n_hiddens] * 2, act_fun, n_layers * i, mode) ex.train_maf_cond([n_hiddens] * 2, act_fun, n_layers * i, mode) ex.train_maf_on_made([n_hiddens] * 2, act_fun, n_layers, n_comps, mode) ex.train_maf_on_made_cond([n_hiddens] * 2, act_fun, n_layers, n_comps, mode)
def run_experiments_hepmass(): n_hiddens = 512 n_layers = 5 n_comps = 10 act_fun = 'relu' mode = 'sequential' ex.load_data('hepmass') ex.train_made([n_hiddens] * 1, act_fun, mode) ex.train_made([n_hiddens] * 2, act_fun, mode) ex.train_mog_made([n_hiddens] * 1, act_fun, n_comps, mode) ex.train_mog_made([n_hiddens] * 2, act_fun, n_comps, mode) ex.train_realnvp([n_hiddens] * 1, 'tanh', 'relu', n_layers * 1) ex.train_realnvp([n_hiddens] * 2, 'tanh', 'relu', n_layers * 1) ex.train_realnvp([n_hiddens] * 1, 'tanh', 'relu', n_layers * 2) ex.train_realnvp([n_hiddens] * 2, 'tanh', 'relu', n_layers * 2) ex.train_maf([n_hiddens] * 1, act_fun, n_layers * 1, mode) ex.train_maf([n_hiddens] * 2, act_fun, n_layers * 1, mode) ex.train_maf([n_hiddens] * 1, act_fun, n_layers * 2, mode) ex.train_maf([n_hiddens] * 2, act_fun, n_layers * 2, mode) ex.train_maf_on_made([n_hiddens] * 1, act_fun, n_layers, n_comps, mode) ex.train_maf_on_made([n_hiddens] * 2, act_fun, n_layers, n_comps, mode)
def run_experiments_bsds300(): n_layers = 5 n_comps = 10 act_fun = 'relu' mode = 'sequential' ex.load_data('bsds300') for n_hiddens in [512, 1024]: ex.train_made([n_hiddens] * 1, act_fun, mode) ex.train_made([n_hiddens] * 2, act_fun, mode) ex.train_mog_made([n_hiddens] * 1, act_fun, n_comps, mode) ex.train_mog_made([n_hiddens] * 2, act_fun, n_comps, mode) ex.train_realnvp([n_hiddens] * 1, 'tanh', 'relu', n_layers * 1) ex.train_realnvp([n_hiddens] * 2, 'tanh', 'relu', n_layers * 1) ex.train_realnvp([n_hiddens] * 1, 'tanh', 'relu', n_layers * 2) ex.train_realnvp([n_hiddens] * 2, 'tanh', 'relu', n_layers * 2) ex.train_maf([n_hiddens] * 1, act_fun, n_layers * 1, mode) ex.train_maf([n_hiddens] * 2, act_fun, n_layers * 1, mode) ex.train_maf([n_hiddens] * 1, act_fun, n_layers * 2, mode) ex.train_maf([n_hiddens] * 2, act_fun, n_layers * 2, mode) ex.train_maf_on_made([n_hiddens] * 1, act_fun, n_layers, n_comps, mode) ex.train_maf_on_made([n_hiddens] * 2, act_fun, n_layers, n_comps, mode)
def run_experiments_cifar10(): n_layers = 5 n_comps = 10 act_fun = 'relu' mode = 'random' ex.load_data('cifar10') for n_hiddens in [1024, 2048]: ex.train_made([n_hiddens] * 1, act_fun, mode) ex.train_made([n_hiddens] * 2, act_fun, mode) ex.train_made_cond([n_hiddens] * 1, act_fun, mode) ex.train_made_cond([n_hiddens] * 2, act_fun, mode) ex.train_mog_made([n_hiddens] * 1, act_fun, n_comps, mode) ex.train_mog_made([n_hiddens] * 2, act_fun, n_comps, mode) ex.train_mog_made_cond([n_hiddens] * 1, act_fun, n_comps, mode) ex.train_mog_made_cond([n_hiddens] * 2, act_fun, n_comps, mode) for i in [1, 2]: ex.train_realnvp([n_hiddens] * 1, 'tanh', 'relu', n_layers * i) ex.train_realnvp([n_hiddens] * 2, 'tanh', 'relu', n_layers * i) ex.train_realnvp_cond([n_hiddens] * 1, 'tanh', 'relu', n_layers * i) ex.train_realnvp_cond([n_hiddens] * 2, 'tanh', 'relu', n_layers * i) ex.train_maf([n_hiddens] * 1, act_fun, n_layers * i, mode) ex.train_maf([n_hiddens] * 2, act_fun, n_layers * i, mode) ex.train_maf_cond([n_hiddens] * 1, act_fun, n_layers * i, mode) ex.train_maf_cond([n_hiddens] * 2, act_fun, n_layers * i, mode) ex.train_maf_on_made([n_hiddens] * 1, act_fun, n_layers, n_comps, mode) ex.train_maf_on_made([n_hiddens] * 2, act_fun, n_layers, n_comps, mode) ex.train_maf_on_made_cond([n_hiddens] * 1, act_fun, n_layers, n_comps, mode) ex.train_maf_on_made_cond([n_hiddens] * 2, act_fun, n_layers, n_comps, mode)