예제 #1
0
def main(args):

    # do not track lambda param, it can be changed after train
    exp = Experiment(args, ignore=('lambda_', ))
    print(exp)

    if exp.found:
        print('Already exists: SKIPPING')
        exit(0)

    np.random.seed(args.seed)
    tf.random.set_seed(args.seed)

    # get data
    train_dataset = get_train_data(args.category,
                                   image_size=args.image_size,
                                   patch_size=args.patch_size,
                                   batch_size=args.batch_size,
                                   n_batches=args.n_batches,
                                   rotation_range=args.rotation_range,
                                   seed=args.seed)

    test_dataset, test_labels = get_test_data(args.category,
                                              image_size=args.image_size,
                                              patch_size=args.patch_size,
                                              batch_size=args.batch_size)

    is_object = args.category in objects

    # build models
    generator = make_generator(args.latent_size,
                               channels=args.channels,
                               upsample_first=is_object,
                               upsample_type=args.ge_up,
                               bn=args.ge_bn,
                               act=args.ge_act)
    encoder = make_encoder(args.patch_size,
                           args.latent_size,
                           channels=args.channels,
                           bn=args.ge_bn,
                           act=args.ge_act)
    discriminator = make_discriminator(args.patch_size,
                                       args.latent_size,
                                       channels=args.channels,
                                       bn=args.d_bn,
                                       act=args.d_act)
    # feature extractor model for evaluation
    discriminator_features = get_discriminator_features_model(discriminator)

    # build optimizers
    generator_encoder_optimizer = O.Adam(args.lr,
                                         beta_1=args.ge_beta1,
                                         beta_2=args.ge_beta2)
    discriminator_optimizer = O.Adam(args.lr,
                                     beta_1=args.d_beta1,
                                     beta_2=args.d_beta2)

    # reference to the models to use in eval
    generator_eval = generator
    encoder_eval = encoder

    # for smoothing generator and encoder evolution
    if args.ge_decay > 0:
        ema = tf.train.ExponentialMovingAverage(decay=args.ge_decay)
        generator_ema = tf.keras.models.clone_model(generator)
        encoder_ema = tf.keras.models.clone_model(encoder)

        generator_eval = generator_ema
        encoder_eval = encoder_ema

    # checkpointer
    checkpoint = tf.train.Checkpoint(
        generator=generator,
        encoder=encoder,
        discriminator=discriminator,
        generator_encoder_optimizer=generator_encoder_optimizer,
        discriminator_optimizer=discriminator_optimizer)
    best_ckpt_path = exp.ckpt(f'ckpt_{args.category}_best')
    last_ckpt_path = exp.ckpt(f'ckpt_{args.category}_last')

    # log stuff
    log, log_file = exp.require_csv(f'log_{args.category}.csv.gz')
    metrics, metrics_file = exp.require_csv(f'metrics_{args.category}.csv')
    best_metric = 0.
    best_recon = float('inf')
    best_recon_file = exp.path_to(f'best_recon_{args.category}.png')
    last_recon_file = exp.path_to(f'last_recon_{args.category}.png')

    # animate generation during training
    n_preview = 6
    train_batch = next(iter(train_dataset))[:n_preview]
    test_batch = next(iter(test_dataset))[0][:n_preview]
    latent_batch = tf.random.normal([n_preview, args.latent_size])

    if not is_object:  # take random patches from test images
        patch_location = np.random.randint(0,
                                           args.image_size - args.patch_size,
                                           (n_preview, 2))
        test_batch = [
            x[i:i + args.patch_size, j:j + args.patch_size, :]
            for x, (i, j) in zip(test_batch, patch_location)
        ]
        test_batch = K.stack(test_batch)

    video_out = exp.path_to(f'{args.category}.mp4')
    video_options = dict(fps=30, codec='libx265',
                         quality=4)  # see imageio FFMPEG options
    video_saver = VideoSaver(train_batch, test_batch, latent_batch, video_out,
                             **video_options)
    video_saver.generate_and_save(generator, encoder)

    # train loop
    progress = tqdm(train_dataset, desc=args.category, dynamic_ncols=True)
    try:
        for step, image_batch in enumerate(progress, start=1):
            if step == 1 or args.d_iter == 0:  # only for JIT compilation (tf.function) to work
                d_train = True
                ge_train = True
            elif args.d_iter:
                n_iter = step % (abs(args.d_iter) + 1)  # can be in [0, d_iter]
                d_train = (n_iter != 0) if (args.d_iter > 0) else (
                    n_iter == 0)  # True in [1, d_iter]
                ge_train = not d_train  # True when step == d_iter + 1
            else:  # d_iter == None: dynamic adjustment
                d_train = (scores['fake_score'] > 0) or (scores['real_score'] <
                                                         0)
                ge_train = (scores['real_score'] > 0) or (scores['fake_score']
                                                          < 0)

            losses, scores = train_step(image_batch,
                                        generator,
                                        encoder,
                                        discriminator,
                                        generator_encoder_optimizer,
                                        discriminator_optimizer,
                                        d_train,
                                        ge_train,
                                        alpha=args.alpha,
                                        gp_weight=args.gp_weight)

            if (args.ge_decay > 0) and (step % 10 == 0):
                ge_vars = generator.variables + encoder.variables
                ema.apply(ge_vars)  # update exponential moving average

            # tensor to numpy
            losses = {
                n: l.numpy() if l is not None else l
                for n, l in losses.items()
            }
            scores = {
                n: s.numpy() if s is not None else s
                for n, s in scores.items()
            }

            # log step metrics
            entry = {
                'step': step,
                'timestamp': pd.to_datetime('now'),
                **losses,
                **scores
            }
            log = log.append(entry, ignore_index=True)

            if step % 100 == 0:
                if args.ge_decay > 0:
                    ge_ema_vars = generator_ema.variables + encoder_ema.variables
                    for v_ema, v in zip(ge_ema_vars, ge_vars):
                        v_ema.assign(ema.average(v))

                preview = video_saver.generate_and_save(
                    generator_eval, encoder_eval)

            if step % 1000 == 0:
                log.to_csv(log_file, index=False)
                checkpoint.write(file_prefix=last_ckpt_path)

                auc, balanced_accuracy = evaluate(generator_eval,
                                                  encoder_eval,
                                                  discriminator_features,
                                                  test_dataset,
                                                  test_labels,
                                                  patch_size=args.patch_size,
                                                  lambda_=args.lambda_)

                entry = {
                    'step': step,
                    'auc': auc,
                    'balanced_accuracy': balanced_accuracy
                }
                metrics = metrics.append(entry, ignore_index=True)
                metrics.to_csv(metrics_file, index=False)

                if auc > best_metric:
                    best_metric = auc
                    checkpoint.write(file_prefix=best_ckpt_path)

                # save last image to inspect it during training
                imageio.imwrite(last_recon_file, preview)

                recon = losses['images_reconstruction_loss']
                if recon < best_recon:
                    best_recon = recon
                    imageio.imwrite(best_recon_file, preview)

                progress.set_postfix({
                    'AUC': f'{auc:.1%}',
                    'BalAcc': f'{balanced_accuracy:.1%}',
                    'BestAUC': f'{best_metric:.1%}',
                })

    except KeyboardInterrupt:
        checkpoint.write(file_prefix=last_ckpt_path)
    finally:
        log.to_csv(log_file, index=False)
        video_saver.close()

    # score the test set
    checkpoint.read(best_ckpt_path)

    auc, balanced_accuracy = evaluate(generator,
                                      encoder,
                                      discriminator_features,
                                      test_dataset,
                                      test_labels,
                                      patch_size=args.patch_size,
                                      lambda_=args.lambda_)
    print(f'{args.category}: AUC={auc}, BalAcc={balanced_accuracy}')
예제 #2
0
def main(args):
    dataset, q, x = utils.load_benchmark(args.dataset, args.features)

    q = utils.load_features(q, chunks=(2500, 2048))
    x = utils.load_features(x, chunks=(2500, 2048))

    if args.limit:
        x = x[:args.limit]

    n_points, dim = x.shape

    if args.n_cells is None:
        step_k = 2500
        min_points_per_centroid = 39.0
        max_points_per_centroid = 256.0

        # n_train_points = min(n_points, 120000) # train index with less points or it crashes..
        min_k = np.ceil(
            n_points / (step_k * max_points_per_centroid)).astype(int) * step_k
        max_k = np.floor(
            n_points / (step_k * min_points_per_centroid)).astype(int) * step_k
        args.n_cells = min_k
        print('Using min suggested cells:', args.n_cells)

    exp = Experiment(args, root=args.output, ignore=('output', 'pretrained'))
    print(exp)

    # create or load faiss index
    index_file = exp.path_to('index.faiss')
    if not os.path.exists(index_file):
        if args.pretrained:
            print('Loading pre-trained empty index ...')
            index = faiss.read_index(args.pretrained)
            train_time = None
        else:
            tmp = utils.compute_if_dask(x)
            print('Creating index: training ...')
            index = faiss.index_factory(
                dim, 'IVF{},PQ{}'.format(args.n_cells, args.code_size))
            # index = faiss.index_factory(dim, 'IVF{},Flat'.format(args.n_cells))
            start = time.time()
            index.train(tmp)
            train_time = time.time() - start
            del tmp

        print('Creating index: adding ...')
        start = time.time()
        bs = 2**14
        for i in trange(0, x.shape[0], bs):
            batch = utils.compute_if_dask(x[i:i + bs])
            index.add(batch)
        add_time = time.time() - start

        faiss.write_index(index, index_file)
        size = os.path.getsize(index_file)
        index_stats_file = exp.path_to('index_stats.csv')
        index_stats = pd.DataFrame(
            {
                'size': size,
                'train_time': train_time,
                'add_time': add_time
            },
            index=[0])
        index_stats.to_csv(index_stats_file, index=False)
    else:
        print('Loading pre-built index ...')
        index = faiss.read_index(index_file)

    n_probes = (1, 2, 5, 10, 25)  # , 50, 100, 250, 500, 1000, 2500, 5000)
    n_probes = filter(lambda x: x <= args.n_cells, n_probes)
    params = vars(args)
    progress = tqdm(n_probes)
    for p in progress:
        index.nprobe = p
        params['nprobe'] = p
        progress.set_postfix(
            {k: v
             for k, v in params.items() if k != 'output'})

        scores = None
        scores_file = exp.path_to(f'scores_np{p}.h5')
        if not os.path.exists(scores_file):
            print('Computing scores:', scores_file)
            q = utils.compute_if_dask(q)
            # execute kNN search using k = dataset size
            ranked_sim, ranked_ids = index.search(q, n_points)
            # we need a similarity matrix, we construct it from the ranked results.
            # we fill it initially with the lowest score (not recovered IDs has infinity score)
            if False:  # XXX OPTIMIZED VERSION NOT WORKING!!!!
                ranked_ids = np.ma.array(ranked_ids, mask=(ranked_ids < 0))
                id_order = ranked_ids.argsort(axis=1)
                scores = -ranked_sim[np.arange(q.shape[0]).reshape(-1, 1),
                                     id_order]
                del ranked_sim, ranked_ids, id_order
            else:
                scores = np.full((q.shape[0], n_points), np.inf)
                for i, (rsims, rids) in enumerate(zip(ranked_sim, ranked_ids)):
                    for rsim, rid in zip(rsims, rids):
                        if rid > 0:
                            scores[i, rid] = rsim
                scores = -scores

            utils.save_as_hdf5(scores, scores_file, progress=True)

        query_times, query_times_file = exp.require_csv('query_times.csv',
                                                        index='n_probes')
        for i in trange(1, 6):
            if utils.value_missing(query_times, p, f'query_time_run{i}'):
                q = utils.compute_if_dask(q)
                start = time.time()
                index.search(q, n_points)
                query_time = time.time() - start
                query_times.at[p, f'query_time_run{i}'] = query_time
                query_times.to_csv(query_times_file)

        metrics, metrics_file = exp.require_csv(f'metrics_np{p}.csv')

        if 'ap' not in metrics:
            if scores is None:
                print('Loading scores...')
                scores = utils.load_features(scores_file)
            print('Computing mAP...')
            metrics['ap'] = dataset.score(scores[...],
                                          reduction=False,
                                          progress=True)
            metrics.to_csv(metrics_file, index=False)

        if 'ndcg' not in metrics:
            dataset._load()  # TODO in y_true getter
            if scores is None:
                print('Loading scores...')
                scores = utils.load_features(scores_file)
            print('Computing nDCG...')
            y_true = dataset.y_true[:, :args.
                                    limit] if args.limit else dataset.y_true

            bs = 5
            ndcg = []
            for i in trange(0, y_true.shape[0], bs):
                ndcg.append(
                    dcg(y_true[i:i + bs], scores[i:i + bs], normalized=True))
            ndcg = np.concatenate(ndcg)

            # metrics['ndcg'] = dcg(y_true, scores, normalized=True)
            metrics['ndcg'] = ndcg
            metrics.to_csv(metrics_file, index=False)

        if 'ndcg@25' not in metrics:
            dataset._load()  # TODO in y_true getter
            if scores is None:
                progress.write('Loading scores...')
                scores = utils.load_features(scores_file)[...]
            progress.write('Computing nDCG@25...')
            y_true = dataset.y_true[:, :args.
                                    limit] if args.limit else dataset.y_true
            bs = 50
            ndcg = []
            for i in trange(0, y_true.shape[0], bs):
                ndcg.append(
                    dcg(y_true[i:i + bs],
                        scores[i:i + bs],
                        p=25,
                        normalized=True))

            metrics['ndcg@25'] = np.concatenate(ndcg)
            # metrics['ndcg'] = dcg(dataset.y_true, scores, normalized=True)
            metrics.to_csv(metrics_file, index=False)
            progress.write(f'nDCG@25: {metrics["ndcg@25"].mean()}')

        metrics['n_probes'] = p
        metrics.to_csv(metrics_file, index=False)
예제 #3
0
def main(args):
    exp = Experiment.from_dir(args.run, main='model')
    params = next(exp.params.itertuples())

    # data setup
    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Lambda(lambda x: x.numpy())])

    preproc = utils.PREPROC[params.dataset]
    if params.dataset == 'mnist':
        data = MNIST('data/mnist',
                     download=True,
                     train=False,
                     transform=transform)
    elif params.dataset == 'cifar10':
        data = CIFAR10('data/cifar10',
                       download=True,
                       train=False,
                       transform=transform)
        preproc = map(lambda x: np.array(x).reshape((3, 1, 1)),
                      preproc)  # expand dimensions
        preproc = tuple(preproc)

    # model setup
    model = utils.load_model(exp).eval().cuda()
    if args.tol is None:
        args.tol = params.tol

    if params.model == 'odenet':
        model.odeblock.tol = args.tol

    fmodel = foolbox.models.PyTorchModel(model,
                                         bounds=(0, 1),
                                         num_classes=10,
                                         preprocessing=preproc)

    # attack setup
    if args.distance == 2:
        attack = foolbox.attacks.L2BasicIterativeAttack
        distance = foolbox.distances.MSE
    elif args.distance == float('inf'):
        attack = foolbox.attacks.LinfinityBasicIterativeAttack
        distance = foolbox.distances.Linf

    attack = attack(fmodel, distance=distance)

    sub_exp_root = exp.path_to('adv-attack')
    os.makedirs(sub_exp_root, exist_ok=True)

    sub_exp = Experiment(args, root=sub_exp_root, ignore=('run', ))
    print(sub_exp)
    results_file = sub_exp.path_to('results.csv')
    results = pd.read_csv(results_file) if os.path.exists(
        results_file) else pd.DataFrame()

    # perform attack
    progress = tqdm(data)
    for i, (image, label) in enumerate(progress):
        if not results.empty and i in results.sample_id.values:
            continue

        if not isinstance(label, int):
            label = label.item()

        start = time.time()
        adversarial = attack(image,
                             label,
                             unpack=False,
                             binary_search=False,
                             stepsize=args.stepsize,
                             epsilon=args.epsilon)

        elapsed = time.time() - start
        result = pd.DataFrame(dict(
            sample_id=i,
            label=label,
            elapsed_time=elapsed,
            distance=adversarial.distance.value,
            adversarial_class=adversarial.adversarial_class,
            original_class=adversarial.original_class,
        ),
                              index=[0])

        results = results.append(result, ignore_index=True)
        results.to_csv(results_file, index=False)

        success = ~results.adversarial_class.isna()
        successes = success.sum()
        success_rate = success.mean()

        progress.set_postfix({
            'success_rate':
            f'{success_rate:.2%} ({successes}/{len(success)})'
        })
예제 #4
0
def main(args):
    exp = Experiment(args, ignore=('epochs', 'resume'))
    print(exp)

    np.random.seed(args.seed)
    tf.random.set_seed(args.seed)

    data = load_datasets(args.data)

    # TRAIN/VAL/TEST SPLIT
    if args.split == 'subjects':  # by SUBJECTS
        val_subjects = (6, 9, 11, 13, 16, 28, 30, 48, 49)
        test_subjects = (3, 4, 19, 38, 45, 46, 51, 52)
        train_data = data[~data['sub'].isin(val_subjects + test_subjects)]
        val_data = data[data['sub'].isin(val_subjects)]
        test_data = data[data['sub'].isin(test_subjects)]

    elif args.split == 'random':  # 70-20-10 %
        train_data, valtest_data = train_test_split(data,
                                                    test_size=.3,
                                                    shuffle=True)
        val_data, test_data = train_test_split(valtest_data, test_size=.33)

    lengths = map(len, (data, train_data, val_data, test_data))
    print("Total: {} - Train / Val / Test: {} / {} / {}".format(*lengths))

    x_shape = (args.resolution, args.resolution, 1)
    y_shape = (args.resolution, args.resolution, 1)

    train_gen, _ = get_loader(train_data,
                              batch_size=args.batch_size,
                              shuffle=True,
                              augment=True,
                              x_shape=x_shape)
    val_gen, val_categories = get_loader(val_data,
                                         batch_size=args.batch_size,
                                         x_shape=x_shape)
    # test_gen, test_categories = get_loader(test_data, batch_size=1, x_shape=x_shape)

    log = exp.path_to('log.csv')

    # weights_only checkpoints
    best_weights_path = exp.path_to('best_weights.h5')
    best_mask_weights_path = exp.path_to('best_weights_mask.h5')

    # whole model checkpoints
    best_ckpt_path = exp.path_to('best_model.h5')
    last_ckpt_path = exp.path_to('last_model.h5')

    if args.resume and os.path.exists(last_ckpt_path):
        custom_objects = {
            'AdaBeliefOptimizer': AdaBeliefOptimizer,
            'iou_coef': evaluate.iou_coef,
            'dice_coef': evaluate.dice_coef,
            'hard_swish': hard_swish
        }
        model = tf.keras.models.load_model(last_ckpt_path,
                                           custom_objects=custom_objects)
        optimizer = model.optimizer
        initial_epoch = len(pd.read_csv(log))
    else:
        config = vars(args)
        model = build_model(x_shape, y_shape, config)
        optimizer = AdaBeliefOptimizer(learning_rate=args.lr,
                                       print_change_log=False)
        initial_epoch = 0

    model.compile(optimizer=optimizer,
                  loss='binary_crossentropy',
                  metrics={
                      'mask': [evaluate.iou_coef, evaluate.dice_coef],
                      'tags': 'binary_accuracy'
                  })

    model_stopped_file = exp.path_to('early_stopped.txt')
    need_training = not os.path.exists(
        model_stopped_file) and initial_epoch < args.epochs
    if need_training:
        best_checkpointer = ModelCheckpoint(best_weights_path,
                                            monitor='val_loss',
                                            save_best_only=True,
                                            save_weights_only=True)
        best_mask_checkpointer = ModelCheckpoint(best_mask_weights_path,
                                                 monitor='val_mask_dice_coef',
                                                 mode='max',
                                                 save_best_only=True,
                                                 save_weights_only=True)
        last_checkpointer = ModelCheckpoint(last_ckpt_path,
                                            save_best_only=False,
                                            save_weights_only=False)
        logger = CSVLogger(log, append=args.resume)
        progress = TqdmCallback(verbose=1,
                                initial=initial_epoch,
                                dynamic_ncols=True)
        early_stop = tf.keras.callbacks.EarlyStopping(
            monitor='val_mask_dice_coef', mode='max', patience=100)

        callbacks = [
            best_checkpointer, best_mask_checkpointer, last_checkpointer,
            logger, progress, early_stop
        ]

        model.fit(train_gen,
                  epochs=args.epochs,
                  callbacks=callbacks,
                  initial_epoch=initial_epoch,
                  steps_per_epoch=len(train_gen),
                  validation_data=val_gen,
                  validation_steps=len(val_gen),
                  verbose=False)

        if model.stop_training:
            open(model_stopped_file, 'w').close()

        tf.keras.models.save_model(model,
                                   best_ckpt_path,
                                   include_optimizer=False)

    # evaluation on test set
    evaluate.evaluate(exp, force=need_training)

    # save best snapshot in SavedModel format
    model.load_weights(best_mask_weights_path)
    best_savedmodel_path = exp.path_to('best_savedmodel')
    model.save(best_savedmodel_path, save_traces=True)

    # export to tfjs (Layers model)
    tfjs_model_dir = exp.path_to('tfjs')
    tfjs.converters.save_keras_model(model, tfjs_model_dir)
예제 #5
0
def main(args):
    root = 'runs_' + args.dataset
    exp = Experiment(args,
                     root=root,
                     main='model',
                     ignore=('cuda', 'device', 'epochs', 'resume'))

    print(exp)
    if os.path.exists(exp.path_to('log')) and not args.resume:
        print('Skipping ...')
        sys.exit(0)

    train_data, test_data, in_ch, out = load_dataset(args)
    train_loader = DataLoader(train_data,
                              batch_size=args.batch_size,
                              shuffle=True)
    test_loader = DataLoader(test_data,
                             batch_size=args.batch_size,
                             shuffle=False)

    if args.model == 'odenet':
        model = ODENet(in_ch,
                       out=out,
                       n_filters=args.filters,
                       downsample=args.downsample,
                       method=args.method,
                       tol=args.tol,
                       adjoint=args.adjoint,
                       dropout=args.dropout)
    else:
        model = ResNet(in_ch,
                       out=out,
                       n_filters=args.filters,
                       downsample=args.downsample,
                       dropout=args.dropout)

    model = model.to(args.device)
    if args.optim == 'sgd':
        optimizer = SGD(model.parameters(),
                        lr=args.lr,
                        momentum=0.9,
                        weight_decay=args.wd)
    elif args.optim == 'adam':
        optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)

    # print(train_data)
    # print(test_data)
    # print(model)
    # print(optimizer)

    if args.resume:
        ckpt = torch.load(exp.ckpt('last'))
        print('Loaded: {}'.format(exp.ckpt('last')))
        model.load_state_dict(ckpt['model'])
        optimizer.load_state_dict(ckpt['optim'])
        start_epoch = ckpt['epoch'] + 1
        best_accuracy = exp.log['test_acc'].max()
        print('Resuming from epoch {}: {}'.format(start_epoch, exp.name))
    else:
        metrics = evaluate(test_loader, model, args)
        best_accuracy = metrics['test_acc']
        start_epoch = 1

    if args.lrschedule == 'fixed':
        scheduler = LambdaLR(
            optimizer,
            lr_lambda=lambda x: 1)  # no-op scheduler, just for cleaner code
    elif args.lrschedule == 'plateau':
        scheduler = ReduceLROnPlateau(optimizer,
                                      mode='max',
                                      patience=args.patience)
    elif args.lrschedule == 'cosine':
        scheduler = CosineAnnealingLR(optimizer,
                                      args.lrcycle,
                                      last_epoch=start_epoch - 2)

    progress = trange(start_epoch,
                      args.epochs + 1,
                      initial=start_epoch,
                      total=args.epochs)
    for epoch in progress:
        metrics = {'epoch': epoch}

        progress.set_postfix({'Best ACC': f'{best_accuracy:.2%}'})
        progress.set_description('TRAIN')
        train_metrics = train(train_loader, model, optimizer, args)

        progress.set_description('EVAL')
        test_metrics = evaluate(test_loader, model, args)

        is_best = test_metrics['test_acc'] > best_accuracy
        best_accuracy = max(test_metrics['test_acc'], best_accuracy)

        metrics.update(train_metrics)
        metrics.update(test_metrics)

        save_checkpoint(
            exp, {
                'epoch': epoch,
                'params': vars(args),
                'model': model.state_dict(),
                'optim': optimizer.state_dict(),
                'metrics': metrics
            }, is_best)

        exp.push_log(metrics)
        sched_args = metrics[
            'test_acc'] if args.lrschedule == 'plateau' else None
        scheduler.step(sched_args)
예제 #6
0
def main(args):
    exp = Experiment.from_dir(args.run, main='model')
    params = next(exp.params.itertuples())

    # data setup
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.numpy())
    ])

    preproc = utils.PREPROC[params.dataset]
    if params.dataset == 'mnist':
        data = MNIST('data/mnist', download=True, train=False, transform=transform)
    elif params.dataset == 'cifar10':
        data = CIFAR10('data/cifar10', download=True, train=False, transform=transform)
        preproc = map(lambda x: np.array(x).reshape((3, 1, 1)), preproc)  # expand dimensions
        preproc = tuple(preproc)

    t = np.linspace(0, 1, args.resolution + 1).tolist()

    # model setup
    model = utils.load_model(exp).eval().cuda()
    extractor = utils.load_model(exp).eval().cuda()
    extractor.to_features_extractor(keep_pool=False)
    extractor.odeblock.t1 = t

    if args.tol is None:
        args.tol = params.tol

    if params.model == 'odenet':
        model.odeblock.tol = args.tol
        extractor.odeblock.tol = args.tol

    fmodel = foolbox.models.PyTorchModel(model, bounds=(0, 1), num_classes=10, preprocessing=preproc)

    # attack setup
    if args.distance == 2:
        attack = foolbox.attacks.L2BasicIterativeAttack
        distance = foolbox.distances.MSE
    elif args.distance == float('inf'):
        attack = foolbox.attacks.LinfinityBasicIterativeAttack
        distance = foolbox.distances.Linf

    attack = attack(fmodel, distance=distance)

    sub_exp_root = exp.path_to('adv-attack')
    os.makedirs(sub_exp_root, exist_ok=True)

    sub_exp = Experiment(args, root=sub_exp_root, ignore=('run', 'resolution'))
    print(sub_exp)
    results_file = sub_exp.path_to('results.csv')
    diff_l2_file = sub_exp.path_to('diff_l2.csv')
    diff_cos_file = sub_exp.path_to('diff_cos.csv')

    if not os.path.exists(results_file):
        print('No results on attacks found:', results_file)
        return

    results = pd.read_csv(results_file).set_index('sample_id')

    diff_l2 = pd.read_csv(diff_l2_file) if os.path.exists(diff_l2_file) else pd.DataFrame()
    diff_cos = pd.read_csv(diff_cos_file) if os.path.exists(diff_cos_file) else pd.DataFrame()
    diff_cols = ['sample_id'] + t

    progress = tqdm(data)
    for i, (image, label) in enumerate(progress):
        
        if (not diff_l2.empty and not diff_cos.empty and
            i in diff_l2.sample_id.values and i in diff_cos.sample_id.values):
            continue  # skipping, already computed

        perturbation_distance = results.at[i, 'distance']
        if perturbation_distance == 0 or not np.isfinite(perturbation_distance):
            continue  # skipping natural errors or not-found adversarials

        if not isinstance(label, int):
            label = label.item()

        start = time.time()
        adversarial = attack(image, label, unpack=False, binary_search=False, epsilon=args.epsilon)
        elapsed = time.time() - start

        if adversarial.perturbed is None:
            tqdm.write(f'WARN: adversarial not found when reproducing [sample_id = {i}]')
            continue

        with torch.no_grad():
            original_image = torch.from_numpy(adversarial.unperturbed).cuda()
            original_traj = extractor(original_image.unsqueeze(0))

            adversarial_image = torch.from_numpy(adversarial.perturbed).cuda()
            adversarial_traj = extractor(adversarial_image.unsqueeze(0))

        adversarial_traj = adversarial_traj.reshape(args.resolution + 1, -1)
        original_traj = original_traj.reshape(args.resolution + 1, -1)

        """ L2 """
        diff_traj = adversarial_traj - original_traj
        diff_traj = (diff_traj ** 2).sum(1).sqrt()
        diff_traj = diff_traj.cpu().numpy()
        tmp = pd.DataFrame([[i] + diff_traj.tolist()], columns=diff_cols)
        diff_l2 = diff_l2.append(tmp, ignore_index=True)
        diff_l2.to_csv(diff_l2_file, index=False)
        
        """ Cosine similarity """
        diff_traj = F.cosine_similarity(adversarial_traj, original_traj)
        diff_traj = diff_traj.cpu().numpy()
        tmp = pd.DataFrame([[i] + diff_traj.tolist()], columns=diff_cols)
        diff_cos = diff_cos.append(tmp, ignore_index=True)
        diff_cos.to_csv(diff_cos_file, index=False)
예제 #7
0
def main(args):
    es = Elasticsearch(timeout=30, max_retries=10, retry_on_timeout=True)
    dataset, q, x = utils.load_benchmark(args.dataset, args.features)

    q = utils.load_features(q, chunks=(5000, 2048))
    x = utils.load_features(x, chunks=(5000, 2048))
    n_queries, n_samples = q.shape[0], x.shape[0]

    if args.limit:
        x = x[:args.limit]

    if args.crelu:
        q = crelu(q)
        x = crelu(x)

    params = vars(args)
    ignore = ('output', 'force')
    progress = tqdm(zip(args.threshold, args.sq_factor), total=len(args.threshold))
    for thr, s in progress:
        params['threshold'] = thr
        params['sq_factor'] = s
        progress.set_postfix({k: v for k, v in params.items() if k not in ignore})
        exp = Experiment(params, root=args.output, ignore=ignore)

        density, density_file = exp.require_csv(f'density.csv')
        if 'query_density' not in density:
            progress.write('Computing query density ...')
            q_sq = thr_sq(q, thr, s)
            q_density = (q_sq != 0).mean(axis=0)
            q_density = utils.compute_if_dask(q_density)
            density['query_density'] = q_density
            density.to_csv(density_file, index=False)

        if 'database_density' not in density:
            progress.write('Computing database density ...')
            x_sq = thr_sq(x, thr, s)
            x_density = (x_sq != 0).mean(axis=0)
            x_density = utils.compute_if_dask(x_density)
            density['database_density'] = x_density
            density.to_csv(density_file, index=False)

        index_name = exp.name.lower()
        if not es.indices.exists(index_name) or es.count(index=index_name)['count'] < n_samples or args.force:
            # x_sq = thr_sq(x, thr, s)
            x_ids, _ = dataset.images()

            index_actions = generate_index_actions(es, index_name, x, x_ids, thr, s, 50)
            # index_actions = tqdm(index_actions, total=n_samples)

            progress.write(f'Indexing: {index_name}')

            index_config = {
                "mappings": {
                    "_source": {"enabled": False},  # do not store STR
                    "properties": {"repr": {"type": "text"}}  # FULLTEXT
                },
                "settings": {
                    "index": {"number_of_shards": 1, "number_of_replicas": 0},
                    "analysis": {"analyzer": {"first": {"type": "whitespace"}}}
                }
            }
            
            # es.indices.delete(index_name, ignore=(400, 404))
            es.indices.create(index_name, index_config, ignore=400)
            es.indices.put_settings({"index": {"refresh_interval": "-1", "number_of_replicas": 0}}, index_name)

            indexing = parallel_bulk(es, index_actions, thread_count=4, chunk_size=150, max_chunk_bytes=2**26)
            indexing = tqdm(indexing, total=n_samples)
            start = time.time()            
            deque(indexing, maxlen=0)
            add_time = time.time() - start
            progress.write(f'Index time: {add_time}')

            es.indices.put_settings({"index": {"refresh_interval": "1s"}}, index_name)
            es.indices.refresh()

            index_stats_file = exp.path_to('index_stats.csv')
            index_stats = pd.DataFrame({'add_time': add_time}, index=[0])
            index_stats.to_csv(index_stats_file, index=False)

        metrics, metrics_file = exp.require_csv(f'metrics.csv')

        scores = None
        scores_file = exp.path_to(f'scores.h5')
        if not os.path.exists(scores_file):
            progress.write('Computing scores...')

            xid2idx = {k: i for i, k in enumerate(dataset.images()[0])}
            q_sq = thr_sq(q, thr, s)
            q_sq = utils.compute_if_dask(q_sq, progress=False)

            scores = np.zeros((n_queries, n_samples), dtype=np.float32)
            query_times = []
            
            for i, qi in enumerate(tqdm(q_sq)):
                query = {
                    "query": {"query_string": {"default_field": "repr", "query": surrogate_text(qi, boost=True)}},
                    # "from": 0, "size": n_samples
                }
                start = time.time()
                for hit in tqdm(scan(es, query, index=index_name, preserve_order=True), total=n_samples):
                    j = xid2idx[hit['_id']]
                    scores[i, j] = hit['_score']

                query_times.append(time.time() - start)
            metrics['query_time'] = query_times
            metrics.to_csv(metrics_file, index=False)
            progress.write(f'Query time: {metrics.query_time.sum()}')
            utils.save_as_hdf5(scores, scores_file, progress=True)

        if 'ap' not in metrics:
            if scores is None:
                progress.write('Loading scores...')
                scores = utils.load_features(scores_file)[...]
            progress.write('Computing mAP...')
            metrics['ap'] = dataset.score(scores, reduction=False, progress=True)
            metrics.to_csv(metrics_file, index=False)
            progress.write(f'mAP: {metrics.ap.mean()}')

        if 'ndcg' not in metrics:
            dataset._load()  # TODO in y_true getter
            if scores is None:
                progress.write('Loading scores...')
                scores = utils.load_features(scores_file)[...]
            progress.write('Computing nDCG...')
            metrics['ndcg'] = dcg(dataset.y_true, scores, normalized=True)
            metrics.to_csv(metrics_file, index=False)
            progress.write(f'nDCG: {metrics.ndcg.mean()}')
예제 #8
0
def main(args):
    lucene_vm = lucene.initVM(vmargs=['-Djava.awt.headless=true'])
    lucene_vm.attachCurrentThread()

    dataset, q, x = utils.load_benchmark(args.dataset, args.features)

    q = utils.load_features(q, chunks=(5000, 2048))
    x = utils.load_features(x, chunks=(5000, 2048))

    if args.limit:
        x = x[:args.limit]

    n_queries, n_samples = q.shape[0], x.shape[0]

    if args.crelu:
        q = crelu(q)
        x = crelu(x)

    params = vars(args)
    ignore = ('output', 'force')
    progress = tqdm(zip(args.threshold, args.sq_factor),
                    total=len(args.threshold))
    for thr, s in progress:
        params['threshold'] = thr
        params['sq_factor'] = s
        progress.set_postfix(
            {k: v
             for k, v in params.items() if k not in ignore})
        exp = Experiment(params, root=args.output, ignore=ignore)

        density, density_file = exp.require_csv(f'density.csv')
        if 'query_density' not in density:
            progress.write('Computing query density ...')
            q_re = q.rechunk({0: -1, 1: 'auto'}) if utils.is_dask(q) else q
            q_sq = threshold(q_re, thr, s)
            q_density = (q_sq != 0).mean(axis=0)
            q_density = utils.compute_if_dask(q_density)
            density['query_density'] = q_density
            density.to_csv(density_file, index=False)

        if 'database_density' not in density:
            progress.write('Computing database density ...')
            x_re = q.rechunk({0: -1, 1: 'auto'}) if utils.is_dask(x) else x
            x_sq = threshold(x_re, thr, s)
            x_density = (x_sq != 0).mean(axis=0)
            x_density = utils.compute_if_dask(x_density)
            density['database_density'] = x_density
            density.to_csv(density_file, index=False)

        index_stats, index_stats_file = exp.require_csv('index_stats.csv')

        index_name = exp.name.lower()
        index_path = exp.path_to('lucene_index')
        with LuceneIndex(index_path) as idx:
            if idx.count() < n_samples:
                x_sq = threshold(x, thr, s)
                x_sq = batch_features(x_sq, 5000)
                # x_str = features_to_str(x_sq, 5000)

                progress.write(f'Indexing: {index_name}')

                start = time.time()
                for i, xi in enumerate(tqdm(x_sq, total=n_samples)):
                    idx.add(str(i), xi)

                add_time = time.time() - start
                progress.write(f'Index time: {add_time}')

                index_stats.at[0, 'add_time'] = add_time

            if 'size' not in index_stats.columns:
                index_stats.at[0, 'size'] = utils.get_folder_size(index_path)

            index_stats.to_csv(index_stats_file, index=False)

        metrics, metrics_file = exp.require_csv(f'metrics.csv')

        scores = None
        scores_file = exp.path_to(f'scores.h5')
        if not os.path.exists(scores_file):
            progress.write('Computing scores...')

            q_sq = threshold(q, thr, s)
            q_sq = utils.compute_if_dask(q_sq, progress=False)
            # q_str = features_to_str(q_sq, n_queries, boost=True)

            scores = np.zeros((n_queries, n_samples), dtype=np.float32)
            query_times = []

            if True:  # sequential version
                for i, qi in enumerate(tqdm(q_sq, total=n_queries)):
                    start = time.time()
                    if qi.any():
                        for j, score in tqdm(idx.query(qi, n_samples),
                                             total=n_samples):
                            scores[i, int(j)] = score
                        query_times.append(time.time() - start)
                    else:
                        query_times.append(None)

            else:  # Parallel version (currently slower)
                idx._init_searcher()

                def _search(i, qi):
                    lucene_vm.attachCurrentThread()
                    scores_i = np.zeros(n_samples, dtype=np.float32)
                    start = time.time()
                    if qi.any():
                        for j, score in idx.query(qi, n_samples):
                            scores_i[int(j)] = score
                        query_time = time.time() - start
                    else:
                        query_time = None

                    return scores_i, query_time

                queries = enumerate(tqdm(q_sq, total=n_queries))
                scores_n_times = Parallel(n_jobs=6, prefer="threads")(
                    delayed(_search)(i, qi) for i, qi in queries)
                scores, query_times = zip(*scores_n_times)
                scores = np.vstack(scores)

            metrics['query_time'] = query_times
            metrics.to_csv(metrics_file, index=False)
            progress.write(f'Query time: {metrics.query_time.sum()}')
            utils.save_as_hdf5(scores, scores_file, progress=True)

        if 'ap' not in metrics:
            dataset._load()  # TODO in y_true getter
            if scores is None:
                progress.write('Loading scores...')
                scores = utils.load_features(scores_file)[...]
            progress.write('Computing mAP...')
            metrics['ap'] = dataset.score(scores,
                                          reduction=False,
                                          progress=True)
            metrics.to_csv(metrics_file, index=False)
            progress.write(f'mAP: {metrics.ap.mean()}')

        if 'ndcg' not in metrics:
            dataset._load()  # TODO in y_true getter
            if scores is None:
                progress.write('Loading scores...')
                scores = utils.load_features(scores_file)[...]
            progress.write('Computing nDCG...')
            y_true = dataset.y_true[:, :args.
                                    limit] if args.limit else dataset.y_true
            bs = 50
            ndcg = []
            for i in trange(0, y_true.shape[0], bs):
                ndcg.append(
                    dcg(y_true[i:i + bs], scores[i:i + bs], normalized=True))

            metrics['ndcg'] = np.concatenate(ndcg)
            # metrics['ndcg'] = dcg(dataset.y_true, scores, normalized=True)
            metrics.to_csv(metrics_file, index=False)
            progress.write(f'nDCG: {metrics.ndcg.mean()}')

        if 'ndcg@25' not in metrics:
            dataset._load()  # TODO in y_true getter
            if scores is None:
                progress.write('Loading scores...')
                scores = utils.load_features(scores_file)[...]
            progress.write('Computing nDCG@25...')
            y_true = dataset.y_true[:, :args.
                                    limit] if args.limit else dataset.y_true
            bs = 50
            ndcg = []
            for i in trange(0, y_true.shape[0], bs):
                ndcg.append(
                    dcg(y_true[i:i + bs],
                        scores[i:i + bs],
                        p=25,
                        normalized=True))

            metrics['ndcg@25'] = np.concatenate(ndcg)
            # metrics['ndcg'] = dcg(dataset.y_true, scores, normalized=True)
            metrics.to_csv(metrics_file, index=False)
            progress.write(f'nDCG@25: {metrics["ndcg@25"].mean()}')