def exp2(): report.set_save_file("experiment2_ccd_%s.csv" % start_time_str) for run in range(3): report.run = run for alg in ["ccd"]: for vis in ["st", "sh", "kp", "as"]: for dataset in ["ds_with_duplicates", "ds_no_duplicates"]: try_learn(alg, algos[alg], dataset, vis, datasets_path, epochs, lazy_mode, False) report.reset()
def exp1(): report.set_save_file("experiment1_cc_%s.csv" % start_time_str) for run in range(3): report.run = run print("-CSV-Run: %s" % run) for resnet in ["resnet18", "resnet50"]: for vis in ["st"]: for dataset in ["oj"]: try_learn("cc", learn, dataset, vis, datasets_path, resnet, epochs, lazy_mode) report.reset()
def exp1(): report.set_save_file("experiment1_%s.csv" % start_time_str) for run in range(3): report.run = run print("-CSV-Run: %s" % run) for alg in ["bdsvm"]: for vis in ["st", "sh", "kp", "as"]: for dataset in ["viscode_t4_limited_art"]: try_learn(alg, algos[alg], dataset, vis, datasets_path, epochs, lazy_mode) report.reset()
def exptest(): report.set_save_file("test.csv") for run in range(3): report.run = run print("--- Run: %s" % run) for alg in ["fc"]: for vis in ["st", "sh", "kp", "as"]: for dataset in ["viscode_t4_limited_art", "gen"]: try_learn(alg, algos[alg], dataset, vis, datasets_path, epochs, lazy_mode) report.reset()
def exp4(): report.set_save_file("experiment4_%s.csv" % start_time_str) for run in range(3): report.run = run print("--- Run: %s" % run) for alg in ["bdsvm", "astnn"]: for vis in ["as"]: for dataset in ["gen"]: try_learn(alg, algos[alg], dataset, vis, datasets_path, epochs, lazy_mode) report.reset()
def all( ): # this runs all possible combinations, enable/disable the calls to the method according to your needs report.set_save_file("experiment_all_ccd_%s.csv" % start_time_str) for run in range(3): report.run = run for alg in ["ccd", "astnn"]: for dataset in ["astnn", "ds_with_duplicates", "ds_no_duplicates"]: for vis in ["st", "sh", "kp", "as"]: for retrain in [True, False]: try_learn(alg, algos[alg], dataset, vis, datasets_path, epochs, lazy_mode, retrain) report.reset()
def exp1(): report.set_save_file("experiment1_ccd_%s.csv" % start_time_str) for run in range(3): report.run = run for alg in [ "ccd", "astnn" ]: # ccd includes all 3 binary classifiers, the results need to be filtered from the csv accordingly for vis in ["as"]: for dataset in ["astnn_t4"]: try_learn(alg, algos[alg], dataset, vis, datasets_path, epochs, lazy_mode, False) report.reset()
def exp3(): report.set_save_file("experiment3_%s.csv" % start_time_str) for run in range(3): report.run = run print("--- Run: %s" % run) for alg in ["astnn"]: for vis in ["as"]: for dataset in [ "viscode_t4_limited", "viscode_t4_limited_art", "astnn_t4" ]: try_learn(alg, algos[alg], dataset, vis, datasets_path, epochs, lazy_mode) report.reset()
def exp2(): report.set_save_file("experiment2_%s.csv" % start_time_str) for run in range(3): report.run = run print("-CSV-Run: %s" % run) for alg in [ "bdsvm" ]: # bdnn bundled with bdsvm now to only generate vectors once... for vis in ["as"]: for dataset in [ "viscode_t4_limited", "viscode_t4_limited_art", "astnn_t4" ]: try_learn(alg, algos[alg], dataset, vis, datasets_path, epochs, lazy_mode) report.reset()