예제 #1
0
def exp2():
    report.set_save_file("experiment2_ccd_%s.csv" % start_time_str)
    for run in range(3):
        report.run = run
        for alg in ["ccd"]:
            for vis in ["st", "sh", "kp", "as"]:
                for dataset in ["ds_with_duplicates", "ds_no_duplicates"]:
                    try_learn(alg, algos[alg], dataset, vis, datasets_path,
                              epochs, lazy_mode, False)
    report.reset()
예제 #2
0
def exp1():
    report.set_save_file("experiment1_cc_%s.csv" % start_time_str)
    for run in range(3):
        report.run = run
        print("-CSV-Run: %s" % run)
        for resnet in ["resnet18", "resnet50"]:
            for vis in ["st"]:
                for dataset in ["oj"]:
                    try_learn("cc", learn, dataset, vis, datasets_path, resnet,
                              epochs, lazy_mode)
    report.reset()
예제 #3
0
def exp1():
    report.set_save_file("experiment1_%s.csv" % start_time_str)
    for run in range(3):
        report.run = run
        print("-CSV-Run: %s" % run)
        for alg in ["bdsvm"]:
            for vis in ["st", "sh", "kp", "as"]:
                for dataset in ["viscode_t4_limited_art"]:
                    try_learn(alg, algos[alg], dataset, vis, datasets_path,
                              epochs, lazy_mode)
    report.reset()
예제 #4
0
def exptest():
    report.set_save_file("test.csv")
    for run in range(3):
        report.run = run
        print("--- Run: %s" % run)
        for alg in ["fc"]:
            for vis in ["st", "sh", "kp", "as"]:
                for dataset in ["viscode_t4_limited_art", "gen"]:
                    try_learn(alg, algos[alg], dataset, vis, datasets_path,
                              epochs, lazy_mode)
    report.reset()
예제 #5
0
def exp4():
    report.set_save_file("experiment4_%s.csv" % start_time_str)
    for run in range(3):
        report.run = run
        print("--- Run: %s" % run)
        for alg in ["bdsvm", "astnn"]:
            for vis in ["as"]:
                for dataset in ["gen"]:
                    try_learn(alg, algos[alg], dataset, vis, datasets_path,
                              epochs, lazy_mode)
    report.reset()
예제 #6
0
def all(
):  # this runs all possible combinations, enable/disable the calls to the method according to your needs
    report.set_save_file("experiment_all_ccd_%s.csv" % start_time_str)
    for run in range(3):
        report.run = run
        for alg in ["ccd", "astnn"]:
            for dataset in ["astnn", "ds_with_duplicates", "ds_no_duplicates"]:
                for vis in ["st", "sh", "kp", "as"]:
                    for retrain in [True, False]:
                        try_learn(alg, algos[alg], dataset, vis, datasets_path,
                                  epochs, lazy_mode, retrain)
    report.reset()
예제 #7
0
def exp1():
    report.set_save_file("experiment1_ccd_%s.csv" % start_time_str)
    for run in range(3):
        report.run = run
        for alg in [
                "ccd", "astnn"
        ]:  # ccd includes all 3 binary classifiers, the results need to be filtered from the csv accordingly
            for vis in ["as"]:
                for dataset in ["astnn_t4"]:
                    try_learn(alg, algos[alg], dataset, vis, datasets_path,
                              epochs, lazy_mode, False)
    report.reset()
예제 #8
0
def exp3():
    report.set_save_file("experiment3_%s.csv" % start_time_str)
    for run in range(3):
        report.run = run
        print("--- Run: %s" % run)
        for alg in ["astnn"]:
            for vis in ["as"]:
                for dataset in [
                        "viscode_t4_limited", "viscode_t4_limited_art",
                        "astnn_t4"
                ]:
                    try_learn(alg, algos[alg], dataset, vis, datasets_path,
                              epochs, lazy_mode)
    report.reset()
예제 #9
0
def exp2():
    report.set_save_file("experiment2_%s.csv" % start_time_str)
    for run in range(3):
        report.run = run
        print("-CSV-Run: %s" % run)
        for alg in [
                "bdsvm"
        ]:  # bdnn bundled with bdsvm now to only generate vectors once...
            for vis in ["as"]:
                for dataset in [
                        "viscode_t4_limited", "viscode_t4_limited_art",
                        "astnn_t4"
                ]:
                    try_learn(alg, algos[alg], dataset, vis, datasets_path,
                              epochs, lazy_mode)
    report.reset()