} set_figure_params(serif=True, fontsize=12) fig, axes = plt.subplots(ncols=4, nrows=2, sharey=True) fig.set_size_inches(6.75, 2) for i, (environment, max_value) in enumerate(ENVIRONMENTS.items()): row, col = i // 4, i % 4 df = pd.read_pickle(f"{environment}/{environment}_results.pkl") df = df[df.name != "DQN-delayed"] df = df[df.name != "REINFORCE"] plot_df_key( df=df, axes=axes[row, col], key="value_evaluation" if environment != "cart_pole" else "train_return", get_color=get_color, get_linestyle=get_linestyle, max_value=max_value, ) if environment == "two_state_deterministic": title = "Two State D" elif environment == "two_state_stochastic": title = "Two State S" elif environment == "windy_grid_world": title = "Grid World" else: title = " ".join(environment.split("_")).title() axes[row, col].set_title(title, fontsize=11) for col in range(4):
"""Python Script Template.""" import pandas as pd import matplotlib.pyplot as plt from exps.plotting import plot_df_key, set_figure_params from exps.environments.utilities import get_color, get_linestyle df = pd.read_pickle("two_state_deterministic_results.pkl") set_figure_params(serif=True) fig, axes = plt.subplots(ncols=1, nrows=1) plot_df_key( df=df, axes=axes, key="value_evaluation", get_color=get_color, get_linestyle=get_linestyle, ) plt.xlabel("Episode") plt.ylabel("Reward") plt.title(f"Two-State-Deterministic") # plt.legend(loc="best", frameon=False) plt.legend(bbox_to_anchor=(0.52, 0.3), loc="lower left", frameon=False, ncol=2) plt.savefig("two_state_deterministic_results.pdf", bbox_inches="tight")
"""Python Script Template.""" import pandas as pd import matplotlib.pyplot as plt from exps.plotting import plot_df_key, set_figure_params from exps.environments.utilities import get_color, get_linestyle df = pd.read_pickle("cart_pole_results.pkl") df = df[df.time < 25] # set_figure_params(serif=True) fig, axes = plt.subplots(ncols=1, nrows=1) plot_df_key( df=df, axes=axes, key="train_return", get_color=get_color, get_linestyle=get_linestyle, ) plt.xlabel("Episode") plt.ylabel("Reward") plt.title(f"Cart-Pole") plt.legend(loc="best", frameon=False) # plt.legend(bbox_to_anchor=(0.7, 0.32), loc="lower left", frameon=False) plt.savefig("cart_pole_results.pdf", bbox_inches="tight")