예제 #1
0
 def test_conv2d_nchw(self):
     node = PB({
         'pb':
         PB({
             'attr': {
                 'data_format': PB({'s': b"NCHW"}),
                 'strides': PB({'list': PB({"i": self.strides})}),
                 'padding': PB({'s': b'VALID'}),
                 'dilations': PB({'list': PB({"i": [1, 1, 1, 1]})})
             }
         })
     })
     self.expected = {
         # spatial_dims = [2, 3] will be detected in infer function
         "channel_dims": [1],
         "batch_dims": [0],
         "input_feature_channel": 2,
         "output_feature_channel": 3,
         'dilation': np.array([1, 1, 1, 1], dtype=np.int8),
         'stride': np.array(self.strides, dtype=np.int8),
     }
     Conv2DFrontExtractor.extract(node)
     self.res = node
     self.expected_call_args = (None, False)
     self.compare()
예제 #2
0
 def test_conv_2d_defaults(self):
     node = PB({
         'pb':
         PB({
             'attr': {
                 'data_format': PB({'s': b"NHWC"}),
                 'strides': PB({'list': PB({"i": self.strides})}),
                 'padding': PB({'s': b'VALID'}),
                 'dilations': PB({'list': PB({"i": [1, 1, 1, 1]})})
             }
         })
     })
     self.expected = {
         'bias_addable': True,
         'dilation': np.array([1, 1, 1, 1], dtype=np.int8),
         'type': 'Convolution',
         'layout': 'NHWC',
     }
     Conv2DFrontExtractor.extract(node)
     self.res = node
     self.expected_call_args = (None, False)
     self.compare()