예제 #1
0
    def replace_op(self, graph: Graph, node: Node):
        """
        Replace Softsign according to formula feature/(abs(feature)+1)
        """
        abs_node = Abs(graph, {'name': "abs_" + node.id}).create_node()
        abs_node.in_port(0).connect(node.in_port(0).get_source())

        add_node = create_op_node_with_second_input(graph, Add, np.ones(
            [1]), {"name": node.id + "_plus_1"})
        add_node.in_port(0).connect(abs_node.out_port(0))
        div_node = Div(graph, {"name": "div_" + node.id}).create_node()
        div_node.in_port(0).connect(node.in_port(0).get_source())
        div_node.in_port(1).connect(add_node.out_port(0))
        return [div_node.id]
    def floor_div_replacement(floor_div: Node):
        graph = floor_div.graph
        name = floor_div.soft_get('name', floor_div.id)

        div = Div(graph, {'name': name + '/Div'}).create_node()
        floor = Floor(graph, {'name': name}).create_node()
        div.out_port(0).connect(floor.in_port(0))

        div.in_port(0).connect(floor_div.in_port(0).get_source())
        div.in_port(1).connect(floor_div.in_port(1).get_source())
        floor_div.out_port(0).get_connection().set_source(floor.out_port(0))

        graph.remove_node(floor_div.id)
        rename_node(floor, name)
    def replace_pattern(graph: Graph, match: [str, Node]):
        pow = match['inv']
        mul = match['mul']
        const = match['const']

        name = mul.soft_get('name', mul.id)

        devidend_port = mul.in_port(0).get_source() if mul.in_port(
            1).get_source().node.id == pow.id else mul.in_port(1).get_source()
        divider_port = pow.in_port(0).get_source() if pow.in_port(
            1).get_source().node.id == const.id else pow.in_port(
                1).get_source()

        div = Div(graph, {'name': name + '/div'}).create_node()

        mul.out_port(0).get_connection().set_source(div.out_port(0))
        devidend_port.connect(div.in_port(0))
        divider_port.connect(div.in_port(1))
예제 #4
0
    def dequantize_data(fake_quantize: Node, dst_type: type, quantized_type: type) -> Node:
        graph = fake_quantize.graph
        quantized_data = fake_quantize.in_port(0).get_source().node
        name = fake_quantize.soft_get('name', fake_quantize.id)

        assert quantized_data.soft_get('type') == 'Convert' and quantized_data.dst_type == quantized_type, \
            'Weights aren`t compressed as expected for node {}'.format(fake_quantize.soft_get('name', fake_quantize.id))

        dequantizing_cast = Cast(graph, dict(
            name=quantized_data.name + "/to_{}".format(np_data_type_to_destination_type(dst_type)),
            dst_type=dst_type, stop_value_propagation=True)).create_node()
        fake_quantize.in_port(0).get_connection().set_destination(dequantizing_cast.in_port(0))

        # limits of dequantize
        in_low = fake_quantize.in_port(1).get_source()
        in_high = fake_quantize.in_port(2).get_source()
        out_low = fake_quantize.in_port(3).get_source()
        out_high = fake_quantize.in_port(4).get_source()

        # scale calculation
        output_range = Sub(graph, {'name': name + '/output_range'}).create_node()
        output_range.in_port(0).connect(out_high)
        output_range.in_port(1).connect(out_low)

        input_range = Sub(graph, {'name': name + '/input_range'}).create_node()
        input_range.in_port(0).connect(in_high)
        input_range.in_port(1).connect(in_low)

        scale = Div(graph, {'name': name + '/scale'}).create_node()
        scale.in_port(0).connect(output_range.out_port(0))
        scale.in_port(1).connect(input_range.out_port(0))

        # shift calculation
        descaled_output_low = Div(graph, {'name': name + '/descaled_output_low'}).create_node()
        descaled_output_low.in_port(0).connect(out_low)
        descaled_output_low.in_port(1).connect(scale.out_port(0))

        shift = Sub(graph, {'name': name + '/zero_point'}).create_node()
        shift.in_port(0).connect(in_low)
        shift.in_port(1).connect(descaled_output_low.out_port(0))

        # DeQuantize(x) == Mul(Sub(x, zero_point), scale)
        sub_zp = Sub(graph, {'name': name + '/minus_zp'}).create_node()
        sub_zp.in_port(0).connect(dequantizing_cast.out_port(0))
        sub_zp.in_port(1).connect(shift.out_port(0))

        mul_scale = Mul(graph, {'name': name + '/mulpiply_by_scale'}).create_node()
        mul_scale.in_port(0).connect(sub_zp.out_port(0))
        mul_scale.in_port(1).connect(scale.out_port(0))

        fake_quantize.out_port(0).get_connection().set_source(mul_scale.out_port(0))

        graph.remove_nodes_from([fake_quantize.id, fake_quantize.out_node(0)])
예제 #5
0
def replace_resize(graph: Graph, resize: Node):
    log.debug("Converting of ONNX Resize-11 to Interpolate-4 "
              "is triggered for node {}.".format(
                  resize.soft_get('name', resize.id)))

    input_shape = resize.in_port(0).data.get_shape()
    input_rank = len(input_shape)
    resize_name = resize.soft_get('name', resize.id)
    if input_rank not in {4, 5}:
        log.warning(
            'The input shape is not 4D or 5D for op with name {}'.format(
                resize_name))
        return

    num_of_inputs = len([
        port for port in resize.in_ports().values() if not port.disconnected()
    ])
    assert num_of_inputs in {3, 4}, \
        "Number of inputs of ONNXResize (with name {}) should be equal to 3 or 4".format(resize_name)

    assert resize.soft_get('coordinate_transformation_mode') != 'tf_crop_and_resize', \
        'Mode tf_crop_and_resize is not supported for op {} with name {}'.format(resize.op, resize_name)

    layout = graph.graph['layout']

    if input_rank == 4:
        begin_dim = get_height_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1
    else:
        begin_dim = get_depth_dim(layout, input_rank)
        end_dim = get_width_dim(layout, input_rank) + 1

    sizes_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_sizes',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    scales_ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([begin_dim]),
            2: int64_array([end_dim]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice_scales',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })
    axes_node = Const(
        graph, {
            'name': resize_name + '/axis',
            'value': int64_array(np.arange(begin_dim, end_dim))
        }).create_node()

    shape_calculation_mode = 'scales' if num_of_inputs == 3 else 'sizes'

    interpolate_node = Interpolate(
        graph, {
            'version': 'opset4',
            'mode': convert_mode(resize.mode),
            'coordinate_transformation_mode':
            resize.coordinate_transformation_mode,
            'cube_coeff': resize.cube_coeff,
            'nearest_mode': resize.nearest_mode,
            'pads_begin': int64_array([0]),
            'pads_end': int64_array([0]),
            'antialias': 0,
            'shape_calculation_mode': shape_calculation_mode,
            'in_ports_count': 4
        }).create_node()

    axes_node.out_port(0).connect(interpolate_node.in_port(3))
    shape_of = Shape(graph, {'name': resize_name + '/ShapeOf'}).create_node()

    add_node = create_op_with_const_inputs(graph, Add,
                                           {1: float_array([1.0e-5])},
                                           {'name': resize_name + '/Add'})

    input_data_type = data_type_str_to_np(graph.graph['cmd_params'].data_type)

    if num_of_inputs == 3:
        cast_shape_to_float = Cast(graph, {
            'dst_type': input_data_type
        }).create_node()
        mul_node = Mul(graph, {'name': resize_name + '/Mul'}).create_node()
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        cast_shape_to_float.out_port(0).connect(mul_node.in_port(0))
        cast_add_result_to_int = Cast(graph, {
            'dst_type': np.int64
        }).create_node()
        floor_node = Floor(graph, {
            'name': resize_name + '/Floor'
        }).create_node()
        mul_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(floor_node.in_port(0))
        floor_node.out_port(0).connect(cast_add_result_to_int.in_port(0))
        cast_add_result_to_int.out_port(0).connect(sizes_ss.in_port(0))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_scales = resize.in_port(2).get_connection()
        connection_of_scales.set_destination(scales_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_scales.get_source().connect(mul_node.in_port(1))
    else:
        cast_shape_to_float = Cast(graph, {
            'dst_type': input_data_type
        }).create_node()
        cast_sizes_to_float = Cast(graph, {
            'dst_type': input_data_type
        }).create_node()
        div_node = Div(graph, {'name': resize_name + '/Div'}).create_node()
        cast_sizes_to_float.out_port(0).connect(div_node.in_port(0))
        cast_shape_to_float.out_port(0).connect(div_node.in_port(1))
        shape_of.out_port(0).connect(cast_shape_to_float.in_port(0))
        div_node.out_port(0).connect(add_node.in_port(0))
        add_node.out_port(0).connect(scales_ss.in_port(0))
        scales_ss.out_port(0).connect(interpolate_node.in_port(2))
        sizes_ss.out_port(0).connect(interpolate_node.in_port(1))

        connection_of_resize_input = resize.in_port(0).get_connection()
        connection_of_resize_input.set_destination(interpolate_node.in_port(0))

        connection_of_sizes = resize.in_port(3).get_connection()
        connection_of_sizes.set_destination(sizes_ss.in_port(0))

        connection_of_resize_input.get_source().connect(shape_of.in_port(0))
        connection_of_sizes.get_source().connect(
            cast_sizes_to_float.in_port(0))

    rename_nodes([(resize, resize_name + '/delete'),
                  (interpolate_node, resize_name)])
    resize.out_port(0).get_connection().set_source(
        interpolate_node.out_port(0))
예제 #6
0
def replace_tf_resize(graph: Graph, resize: Node, interpolation_mode: str):
    resize_name = resize.soft_get('name', resize.id)
    log.debug(
        "Converting of {} to Interpolate-4 is triggered for node {}.".format(
            resize.op, resize_name))

    num_of_inputs = len([
        port for port in resize.in_ports().values() if not port.disconnected()
    ])
    assert num_of_inputs == 2, \
        "Number of inputs of {} (with name {}) should be equal to 2".format(resize.op, resize_name)

    attrs_msg = "If half_pixel_centers attribute of the node {} with op {} is True, " \
                "the attribute align_corners must be False"
    assert not resize.half_pixel_centers or (resize.half_pixel_centers and not resize.align_corners), \
        attrs_msg.format(resize_name, resize.op)

    shape = Shape(graph, {'name': resize_name + '/shapeof'}).create_node()

    layout = graph.graph['layout']
    height_dim = get_height_dim(layout, 4)
    width_dim = get_width_dim(layout, 4)

    ss = create_op_with_const_inputs(
        graph, StridedSlice, {
            1: int64_array([height_dim]),
            2: int64_array([width_dim + 1]),
            3: int64_array([1])
        }, {
            'name': resize_name + '/StridedSlice',
            'begin_mask': int64_array([1]),
            'end_mask': int64_array([1]),
            'new_axis_mask': int64_array([0]),
            'shrink_axis_mask': int64_array([0]),
            'ellipsis_mask': int64_array([0])
        })

    div_node = Div(graph, {'name': resize_name + '/Div'}).create_node()

    shape_to_float = Cast(graph, dict(dst_type=np.float32)).create_node()
    size_to_float = Cast(graph, dict(dst_type=np.float32)).create_node()

    size_to_float.out_port(0).connect(div_node.in_port(0))
    shape_to_float.out_port(0).connect(div_node.in_port(1))
    ss.out_port(0).connect(shape_to_float.in_port(0))
    shape.out_port(0).connect(ss.in_port(0))

    align_corners = resize.align_corners
    half_pixel_centers = resize.half_pixel_centers

    nearest_mode = 'floor' if interpolation_mode == 'nearest' else 'round_prefer_floor'
    if align_corners:
        coordinate_transformation_mode = 'align_corners'
        if interpolation_mode == 'nearest':
            nearest_mode = 'round_prefer_ceil'
    elif half_pixel_centers:
        coordinate_transformation_mode = 'tf_half_pixel_for_nn' if interpolation_mode == 'nearest' else 'half_pixel'
    else:
        coordinate_transformation_mode = 'asymmetric'

    interpolate4 = create_op_with_const_inputs(
        graph, Interpolate, {3: int64_array([height_dim, width_dim])}, {
            'name': resize_name + '/interpolate_4',
            'mode': interpolation_mode,
            'antialias': False,
            'coordinate_transformation_mode': coordinate_transformation_mode,
            'pads_begin': int64_array([0]),
            'pads_end': int64_array([0]),
            'nearest_mode': nearest_mode,
            'cube_coeff': -0.75,
            'shape_calculation_mode': 'sizes',
            'version': 'opset4',
            'in_ports_count': 4,
        })

    resize_input_connection = resize.in_port(0).get_connection()
    resize_input_connection.set_destination(interpolate4.in_port(0))
    resize_input_connection.get_source().connect(shape.in_port(0))

    div_node.out_port(0).connect(interpolate4.in_port(2))

    sizes_connection = resize.in_port(1).get_connection()
    sizes_connection.set_destination(interpolate4.in_port(1))
    sizes_connection.get_source().connect(size_to_float.in_port(0))

    resize.out_port(0).get_connection().set_source(interpolate4.out_port(0))
    rename_nodes([(resize, resize_name + '/delete'),
                  (interpolate4, resize_name)])
예제 #7
0
    def replace_sub_graph(self, graph: Graph, match: Dict[str, Node]):
        node = match['op']
        name = node.name

        # Zero Point Nudging : Scale counting
        f_min = node.in_port(1).get_source()
        node.in_port(1).disconnect()
        f_max = node.in_port(2).get_source()
        node.in_port(2).disconnect()

        f_diff = Sub(graph, {'name': name + '/float_range'}).create_node()
        f_max.connect(f_diff.in_port(0))
        f_min.connect(f_diff.in_port(1))

        quant_min_value = int(node.narrow_range)
        quant_max_value = 2 ** node.num_bits - 1
        i_diff = Const(graph, dict(name=name + '/int_range', value=quant_max_value - quant_min_value)).create_node()

        scale = Div(graph, {'name': name + '/scale'}).create_node()
        f_diff.out_port(0).connect(scale.in_port(0))
        i_diff.out_port(0).connect(scale.in_port(1))

        # Zero Point Nudging : ZP from min counting
        descaled_min = Div(graph, {'name': name + '/descaled_min'}).create_node()
        f_min.connect(descaled_min.in_port(0))
        scale.out_port(0).connect(descaled_min.in_port(1))

        zero_point_from_min = Sub(graph, {'name': name + '/zero_point_from_min'}).create_node()
        quant_min = Const(graph, {'value': quant_min_value, 'name': name + '/quant_min'}).create_node()
        quant_min.out_port(0).connect(zero_point_from_min.in_port(0))
        descaled_min.out_port(0).connect(zero_point_from_min.in_port(1))

        # Zero Point Nudging : Nudged Zero Point counting
        zp_lesser_q_mi = Less(graph, {'name': name + '/zero_point_from_min_less_quant_min'}).create_node()
        zero_point_from_min.out_port(0).connect(zp_lesser_q_mi.in_port(0))
        quant_min.out_port(0).connect(zp_lesser_q_mi.in_port(1))

        zp_greater_q_ma = Greater(graph, {'name': name + '/zero_point_from_min_greater_quant_max'}).create_node()
        zero_point_from_min.out_port(0).connect(zp_greater_q_ma.in_port(0))
        quant_max = Const(graph, {'value': quant_max_value, 'name': name + '/quant_max'}).create_node()
        quant_max.out_port(0).connect(zp_greater_q_ma.in_port(1))

        rounded_zero_point_from_min = Round(graph, {'name': name + '/zero_point_from_min_rounding'}).create_node()
        zero_point_from_min.out_port(0).connect(rounded_zero_point_from_min.in_port(0))

        nudged_zero_point = Select(graph, {'name': name + '/nudging_zp_1_select_less_condition'}).create_node()
        greater_condition = Select(graph, {'name': name + '/nudging_zp_2_select_greater_condition'}).create_node()

        greater_condition.in_port(0).connect(zp_greater_q_ma.out_port(0))
        greater_condition.in_port(1).connect(quant_max.out_port(0))
        greater_condition.in_port(2).connect(rounded_zero_point_from_min.out_port(0))

        nudged_zero_point.in_port(0).connect(zp_lesser_q_mi.out_port(0))
        nudged_zero_point.in_port(1).connect(quant_max.out_port(0))
        nudged_zero_point.in_port(2).connect(greater_condition.out_port(0))

        nudged_i_min = Sub(graph, {'name': name + '/nudged_i_min'}).create_node()
        quant_min.out_port(0).connect(nudged_i_min.in_port(0))
        nudged_zero_point.out_port(0).connect(nudged_i_min.in_port(1))

        nudged_i_max = Sub(graph, {'name': name + '/nudged_i_max'}).create_node()
        quant_max.out_port(0).connect(nudged_i_max.in_port(0))
        nudged_zero_point.out_port(0).connect(nudged_i_max.in_port(1))

        nudged_min = Mul(graph, {'name': name + '/nudged_min'}).create_node()
        nudged_i_min.out_port(0).connect(nudged_min.in_port(0))
        scale.out_port(0).connect(nudged_min.in_port(1))

        nudged_max = Mul(graph, {'name': name + '/nudged_max'}).create_node()
        nudged_i_max.out_port(0).connect(nudged_max.in_port(0))
        scale.out_port(0).connect(nudged_max.in_port(1))

        nudged_min.out_port(0).connect(node.in_port(1))
        nudged_max.out_port(0).connect(node.in_port(2))

        # FakeQuantize operation has 5 inputs instead of 3 inputs in TensorFlow
        node.add_input_port(3, skip_if_exist=True)
        node.add_input_port(4, skip_if_exist=True)

        node.in_port(3).connect(nudged_min.out_port(0))
        node.in_port(4).connect(nudged_max.out_port(0))

        FakeQuantize.update_node_stat(node, {'levels': node['levels']})