예제 #1
0
    def testNTKMeanCovPrediction(self, train_shape, test_shape, network,
                                 out_logits):
        key, x_test, x_train, y_train = self._get_inputs(
            out_logits, test_shape, train_shape)
        init_fn, f, kernel_fn = stax.serial(
            stax.Dense(512, W_std=1.2, b_std=0.05), stax.Erf(),
            stax.Dense(out_logits, W_std=1.2, b_std=0.05))

        reg = 1e-6
        predictor = predict.gradient_descent_mse_ensemble(kernel_fn,
                                                          x_train,
                                                          y_train,
                                                          diag_reg=reg)
        ts = np.array([1., 5., 10.])

        fx_test_inf, cov_test_inf = predictor(ts, x_test, 'ntk', True)
        self.assertEqual(cov_test_inf.shape[1], x_test.shape[0])
        self.assertGreater(np.min(np.linalg.eigh(cov_test_inf)[0]), -1e-8)

        fx_train_inf, cov_train_inf = predictor(ts, None, 'ntk', True)
        self.assertEqual(cov_train_inf.shape[1], x_train.shape[0])
        self.assertGreater(np.min(np.linalg.eigh(cov_train_inf)[0]), -1e-8)

        _kernel_fn = empirical.empirical_kernel_fn(f)
        kernel_fn = jit(
            lambda x1, x2, params: _kernel_fn(x1, x2, 'ntk', params))

        def predict_empirical(key):
            _, params = init_fn(key, train_shape)
            g_dd = kernel_fn(x_train, None, params)
            g_td = kernel_fn(x_test, x_train, params)
            predict_fn = predict.gradient_descent_mse(g_dd,
                                                      y_train,
                                                      diag_reg=reg)
            fx_train_0 = f(params, x_train)
            fx_test_0 = f(params, x_test)
            return predict_fn(ts, fx_train_0, fx_test_0, g_td)

        def predict_mc(count, key):
            key = tf_random_split(key, count)
            fx_train, fx_test = vmap(predict_empirical)(key)
            fx_train_mean = np.mean(fx_train, axis=0)
            fx_test_mean = np.mean(fx_test, axis=0)

            fx_train_centered = fx_train - fx_train_mean
            fx_test_centered = fx_test - fx_test_mean

            cov_train = PredictTest._cov_empirical(fx_train_centered)
            cov_test = PredictTest._cov_empirical(fx_test_centered)

            return fx_train_mean, fx_test_mean, cov_train, cov_test

        fx_train_mc, fx_test_mc, cov_train_mc, cov_test_mc = predict_mc(
            4096, key)
        rtol = 0.05
        self._assertAllClose(fx_train_mc, fx_train_inf, rtol)
        self._assertAllClose(cov_train_mc, cov_train_inf, rtol)
        self._assertAllClose(cov_test_mc, cov_test_inf, rtol)
        self._assertAllClose(fx_test_mc, fx_test_inf, rtol)
예제 #2
0
    def testMaxLearningRate(self, train_shape, network, out_logits,
                            fn_and_kernel):

        key = stateless_uniform(shape=[2],
                                seed=[0, 0],
                                minval=None,
                                maxval=None,
                                dtype=tf.int32)

        keys = tf_random_split(key)
        key = keys[0]
        split = keys[1]
        if len(train_shape) == 2:
            train_shape = (train_shape[0] * 5, train_shape[1] * 10)
        else:
            train_shape = (16, 8, 8, 3)
        x_train = np.asarray(normal(train_shape, seed=split))

        keys = tf_random_split(key)
        key = keys[0]
        split = keys[1]
        y_train = np.asarray(
            stateless_uniform(shape=(train_shape[0], out_logits),
                              seed=split,
                              minval=0,
                              maxval=1) < 0.5, np.float32)
        # Regress to an MSE loss.
        loss = lambda params, x: 0.5 * np.mean((f(params, x) - y_train)**2)
        grad_loss = jit(grad(loss))

        def get_loss(opt_state):
            return loss(get_params(opt_state), x_train)

        steps = 20

        for lr_factor in [0.5, 3.]:
            params, f, ntk = fn_and_kernel(key, train_shape[1:], network,
                                           out_logits)
            g_dd = ntk(x_train, None, 'ntk')

            step_size = predict.max_learning_rate(
                g_dd, y_train_size=y_train.size) * lr_factor
            opt_init, opt_update, get_params = optimizers.sgd(step_size)
            opt_state = opt_init(params)

            init_loss = get_loss(opt_state)

            for i in range(steps):
                params = get_params(opt_state)
                opt_state = opt_update(i, grad_loss(params, x_train),
                                       opt_state)

            trained_loss = get_loss(opt_state)
            loss_ratio = trained_loss / (init_loss + 1e-12)
            if lr_factor == 3.:
                if not math.isnan(loss_ratio):
                    self.assertGreater(loss_ratio, 10.)
            else:
                self.assertLess(loss_ratio, 0.1)
def _kernel_fns(key, input_shape, network, out_logits, diagonal_axes,
                trace_axes):
    init_fn, f, _ = _build_network(input_shape, network, out_logits)
    _, params = init_fn(key, (1, ) + input_shape)
    implicit_kernel_fn = empirical.empirical_implicit_ntk_fn(
        f, trace_axes, diagonal_axes)
    direct_kernel_fn = empirical.empirical_direct_ntk_fn(
        f, trace_axes, diagonal_axes)
    nngp_kernel_fn = empirical.empirical_nngp_fn(f, trace_axes, diagonal_axes)

    implicit_kernel_fn = jit(implicit_kernel_fn)
    direct_kernel_fn = jit(direct_kernel_fn)
    nngp_kernel_fn = jit(nngp_kernel_fn)

    return (partial(implicit_kernel_fn,
                    params=params), partial(direct_kernel_fn, params=params),
            partial(nngp_kernel_fn, params=params))
예제 #4
0
def _empirical_kernel(key, input_shape, network, out_logits, use_dropout):
    init_fn, f, _ = _build_network(input_shape, network, out_logits,
                                   use_dropout)
    keys = tf_random_split(key)
    key = keys[0]
    split = keys[1]
    _, params = init_fn(key, (1, ) + input_shape)
    kernel_fn = jit(empirical.empirical_ntk_fn(f))
    return partial(kernel_fn, params=params, keys=split)
예제 #5
0
        def f_pmapped(x_or_kernel: Union[np.ndarray, Kernel], *args, **kwargs):
            args_np, args_np_idxs = [], []
            args_other = {}

            # TODO(romann): treat `np.ndarray`s in `kwargs` when JAX allows it.
            # https://github.com/google/jax/issues/912
            # Filter out `np.ndarray`s from other arguments.
            for i, arg in enumerate(args):
                if _is_np_ndarray(arg):
                    args_np.append(arg)
                    args_np_idxs.append(i)
                else:
                    args_other[i] = arg

            # Check cache before jitting.
            _key = key + \
                tuple(args_other.items()) + \
                tuple(kwargs.items())

            # If any of the instance inside `_key` is a tf.Tensor object, use `ref()`
            # method to avoid directly hashing the TF Tensor.
            _key = list(_key)
            for i in range(len(_key)):
                if isinstance(_key[i], tf.Tensor):
                    _key[i] = tuple(map(tuple, _key[i].ref()))
                elif isinstance(_key[i], onp.ndarray):
                    _key[i] = tuple(map(tuple, _key[i]))
                elif isinstance(_key[i], tuple):
                    _key[i] = list(_key[i])
                    for j in range(len(_key[i])):
                        if isinstance(_key[i][j], tf.Tensor):
                            _key[i][j] = tuple(map(tuple, _key[i][j].ref()))
                        elif isinstance(_key[i][j], onp.ndarray):
                            _key[i][j] = tuple(map(tuple, _key[i][j]))
                    _key[i] = tuple(_key[i])
            _key = tuple(_key)
            if _key in cache:
                _f = cache[_key]
            else:
                # Define a `np.ndarray`-only function as a closure over other arguments.
                def _f(_x_or_kernel, *_args_np):
                    # Merge args.
                    _args_np = {
                        i: _arg_np
                        for i, _arg_np in zip(args_np_idxs, _args_np)
                    }
                    _args = {**_args_np, **args_other}
                    _args = tuple(v for k, v in sorted(_args.items()))
                    return f(_x_or_kernel, *_args, **kwargs)

                _f = jit(_f) if device_count == 0 else pmap(_f)
                cache[_key] = _f

            # Broadcast `np.ndarray` arguments and apply the new function to them.
            args_np = tree_map(broadcast, args_np)
            return _f(x_or_kernel, *args_np)
def main(unused_argv):
    # Build data pipelines.
    print('Loading data.')
    x_train, y_train, x_test, y_test = \
        datasets.get_dataset('mnist', FLAGS.train_size, FLAGS.test_size)

    # Build the network
    init_fn, apply_fn, _ = stax.serial(stax.Dense(512, 1., 0.05), stax.Erf(),
                                       stax.Dense(10, 1., 0.05))

    key = stateless_uniform(shape=[2],
                            seed=[0, 0],
                            minval=None,
                            maxval=None,
                            dtype=tf.int32)
    _, params = init_fn(key, (1, 784))

    # Create and initialize an optimizer.
    opt_init, opt_apply, get_params = optimizers.sgd(FLAGS.learning_rate)
    state = opt_init(params)

    # Create an mse loss function and a gradient function.
    loss = lambda fx, y_hat: 0.5 * np.mean((fx - y_hat)**2)
    grad_loss = jit(grad(lambda params, x, y: loss(apply_fn(params, x), y)))

    # Create an MSE predictor to solve the NTK equation in function space.
    ntk = nt.batch(nt.empirical_ntk_fn(apply_fn), batch_size=4, device_count=0)
    g_dd = ntk(x_train, None, params)
    g_td = ntk(x_test, x_train, params)
    predictor = nt.predict.gradient_descent_mse(g_dd, y_train)

    # Get initial values of the network in function space.
    fx_train = apply_fn(params, x_train)
    fx_test = apply_fn(params, x_test)

    # Train the network.
    train_steps = int(FLAGS.train_time // FLAGS.learning_rate)
    print('Training for {} steps'.format(train_steps))

    for i in range(train_steps):
        params = get_params(state)
        state = opt_apply(i, grad_loss(params, x_train, y_train), state)

    # Get predictions from analytic computation.
    print('Computing analytic prediction.')
    fx_train, fx_test = predictor(FLAGS.train_time, fx_train, fx_test, g_td)

    # Print out summary data comparing the linear / nonlinear model.
    util.print_summary('train', y_train, apply_fn(params, x_train), fx_train,
                       loss)
    util.print_summary('test', y_test, apply_fn(params, x_test), fx_test, loss)
예제 #7
0
def _jit_vmap(f):
    return jit(vmap(f))
예제 #8
0
def _theoretical_kernel(key, input_shape, network, out_logits):
    init_fn, f, kernel_fn = _build_network(input_shape, network, out_logits)
    _, params = init_fn(key, (-1, ) + input_shape)
    return params, f, jit(kernel_fn, static_argnums=(2, ))
예제 #9
0
def _empirical_kernel(key, input_shape, network, out_logits):
    init_fn, f, _ = _build_network(input_shape, network, out_logits)
    _, params = init_fn(key, (-1, ) + input_shape)
    _kernel_fn = empirical.empirical_kernel_fn(f, trace_axes=())
    kernel_fn = lambda x1, x2, get: _kernel_fn(x1, x2, get, params)
    return params, f, jit(kernel_fn, static_argnums=(2, ))
예제 #10
0
    def testTrainedEnsemblePredCov(self, train_shape, test_shape, network,
                                   out_logits):
        training_steps = 1000
        learning_rate = 0.1
        ensemble_size = 1024

        init_fn, apply_fn, kernel_fn = stax.serial(
            stax.Dense(128, W_std=1.2, b_std=0.05), stax.Erf(),
            stax.Dense(out_logits, W_std=1.2, b_std=0.05))

        opt_init, opt_update, get_params = optimizers.sgd(learning_rate)
        opt_update = jit(opt_update)

        key, x_test, x_train, y_train = self._get_inputs(
            out_logits, test_shape, train_shape)
        predict_fn_mse_ens = predict.gradient_descent_mse_ensemble(
            kernel_fn,
            x_train,
            y_train,
            learning_rate=learning_rate,
            diag_reg=0.)

        train = (x_train, y_train)
        ensemble_key = tf_random_split(key, ensemble_size)

        loss = jit(lambda params, x, y: 0.5 * np.mean(
            (apply_fn(params, x) - y)**2))
        grad_loss = jit(lambda state, x, y: grad(loss)
                        (get_params(state), x, y))

        def train_network(key):
            _, params = init_fn(key, (-1, ) + train_shape[1:])
            opt_state = opt_init(params)
            for i in range(training_steps):
                opt_state = opt_update(i, grad_loss(opt_state, *train),
                                       opt_state)

            return get_params(opt_state)

        params = vmap(train_network)(ensemble_key)
        rtol = 0.08

        for x in [None, 'x_test']:
            with self.subTest(x=x):
                x = x if x is None else x_test
                x_fin = x_train if x is None else x_test
                ensemble_fx = vmap(apply_fn, (0, None))(params, x_fin)

                mean_emp = np.mean(ensemble_fx, axis=0)
                mean_subtracted = ensemble_fx - mean_emp
                cov_emp = np.einsum(
                    'ijk,ilk->jl',
                    mean_subtracted,
                    mean_subtracted,
                    optimize=True) / (mean_subtracted.shape[0] *
                                      mean_subtracted.shape[-1])

                ntk = predict_fn_mse_ens(training_steps,
                                         x,
                                         'ntk',
                                         compute_cov=True)
                self._assertAllClose(mean_emp, ntk.mean, rtol)
                self._assertAllClose(cov_emp, ntk.covariance, rtol)
예제 #11
0
    def testNTKGDPrediction(self, train_shape, test_shape, network, out_logits,
                            fn_and_kernel, momentum, learning_rate, t, loss):
        key, x_test, x_train, y_train = self._get_inputs(
            out_logits, test_shape, train_shape)

        params, f, ntk = fn_and_kernel(key, train_shape[1:], network,
                                       out_logits)

        g_dd = ntk(x_train, None, 'ntk')
        g_td = ntk(x_test, x_train, 'ntk')

        # Regress to an MSE loss.
        loss_fn = lambda y, y_hat: 0.5 * np.mean((y - y_hat)**2)
        grad_loss = jit(grad(lambda params, x: loss_fn(f(params, x), y_train)))

        trace_axes = () if g_dd.ndim == 4 else (-1, )
        if loss == 'mse_analytic':
            if momentum is not None:
                raise absltest.SkipTest(momentum)
            predictor = predict.gradient_descent_mse(
                g_dd,
                y_train,
                learning_rate=learning_rate,
                trace_axes=trace_axes)
        elif loss == 'mse':
            predictor = predict.gradient_descent(loss_fn,
                                                 g_dd,
                                                 y_train,
                                                 learning_rate=learning_rate,
                                                 momentum=momentum,
                                                 trace_axes=trace_axes)
        else:
            raise NotImplementedError(loss)

        predictor = jit(predictor)

        fx_train_0 = f(params, x_train)
        fx_test_0 = f(params, x_test)

        self._test_zero_time(predictor, fx_train_0, fx_test_0, g_td, momentum)
        self._test_multi_step(predictor, fx_train_0, fx_test_0, g_td, momentum)
        if loss == 'mse_analytic':
            self._test_inf_time(predictor, fx_train_0, fx_test_0, g_td,
                                y_train)

        if momentum is None:
            opt_init, opt_update, get_params = optimizers.sgd(learning_rate)
        else:
            opt_init, opt_update, get_params = optimizers.momentum(
                learning_rate, momentum)

        opt_state = opt_init(params)
        for i in range(t):
            params = get_params(opt_state)
            opt_state = opt_update(i, grad_loss(params, x_train), opt_state)

        params = get_params(opt_state)

        fx_train_nn, fx_test_nn = f(params, x_train), f(params, x_test)
        fx_train_t, fx_test_t = predictor(t, fx_train_0, fx_test_0, g_td)

        self.assertAllClose(fx_train_nn, fx_train_t, rtol=RTOL, atol=ATOL)
        self.assertAllClose(fx_test_nn, fx_test_t, rtol=RTOL, atol=ATOL)
예제 #12
0
def main(unused_argv):
    # Build data and .
    print('Loading data.')
    x_train, y_train, x_test, y_test = datasets.get_dataset('mnist',
                                                            permute_train=True)

    # Build the network
    init_fn, f, _ = stax.serial(stax.Dense(512, 1., 0.05), stax.Erf(),
                                stax.Dense(10, 1., 0.05))

    key = stateless_uniform(shape=[2],
                            seed=[0, 0],
                            minval=None,
                            maxval=None,
                            dtype=tf.int32)
    _, params = init_fn(key, (1, 784))

    # Linearize the network about its initial parameters.
    f_lin = nt.linearize(f, params)

    # Create and initialize an optimizer for both f and f_lin.
    opt_init, opt_apply, get_params = momentum(FLAGS.learning_rate, 0.9)
    # opt_init, opt_apply, get_params = optimizers.sgd(FLAGS.learning_rate)

    opt_apply = jit(opt_apply)

    state = opt_init(params)
    state_lin = opt_init(params)

    # momentum = MomentumOptimizer(learning_rate=FLAGS.learning_rate, momentum=0.9)
    # momentum_lin = MomentumOptimizer(learning_rate=FLAGS.learning_rate, momentum=0.9)

    # Create a cross-entropy loss function.
    loss = lambda fx, y_hat: -np.mean(log_softmax(fx) * y_hat)

    # Specialize the loss function to compute gradients for both linearized and
    # full networks.
    grad_loss = jit(grad(lambda params, x, y: loss(f(params, x), y)))
    grad_loss_lin = jit(grad(lambda params, x, y: loss(f_lin(params, x), y)))

    # Train the network.
    print('Training.')
    print('Epoch\tLoss\tLinearized Loss')
    print('------------------------------------------')

    epoch = 0
    steps_per_epoch = 50000 // FLAGS.batch_size

    for i, (x, y) in enumerate(
            datasets.minibatch(x_train, y_train, FLAGS.batch_size,
                               FLAGS.train_epochs)):

        params = get_params(state)
        state = opt_apply(i, grad_loss(params, x, y), state)

        params_lin = get_params(state_lin)
        state_lin = opt_apply(i, grad_loss_lin(params_lin, x, y), state_lin)

        # x = np.asarray(x)
        # y = np.asarray(y)

        # momentum.apply_gradients((grad_loss(params, x, y), params))
        # momentum.apply_gradients((grad_loss_lin(params_lin, x, y), params_lin))

        if i % steps_per_epoch == 0:
            print('{}\t{}\t{}'.format(epoch, loss(f(params, x), y),
                                      loss(f_lin(params_lin, x), y)))
            epoch += 1

    # Print out summary data comparing the linear / nonlinear model.
    x, y = x_train[:10000], y_train[:10000]
    util.print_summary('train', y, f(params, x), f_lin(params_lin, x), loss)
    util.print_summary('test', y_test, f(params, x_test),
                       f_lin(params_lin, x_test), loss)