예제 #1
0
    patches_imgs_test, new_height, new_width, masks_test = get_data_testing_overlap(
        DRIVE_test_imgs_original=DRIVE_test_imgs_original,  # original
        DRIVE_test_groudTruth=path_data +
        config.get('data paths', 'test_groundTruth'),  # masks
        Imgs_to_test=int(config.get('testing settings',
                                    'full_images_to_test')),
        patch_height=patch_height,
        patch_width=patch_width,
        stride_height=stride_height,
        stride_width=stride_width)
else:
    patches_imgs_test, patches_masks_test = get_data_testing(
        DRIVE_test_imgs_original=DRIVE_test_imgs_original,  # original
        DRIVE_test_groudTruth=path_data +
        config.get('data paths', 'test_groundTruth'),  # masks
        Imgs_to_test=int(config.get('testing settings',
                                    'full_images_to_test')),
        patch_height=patch_height,
        patch_width=patch_width,
    )

# ================ Run the prediction of the patches ==================================
best_last = config.get('testing settings', 'best_last')
# Load the saved model
model = model_from_json(
    open(path_experiment + name_experiment + '_architecture.json').read())
model.load_weights(path_experiment + name_experiment + '_' + best_last +
                   '_weights.h5')
# Calculate the predictions
predictions = model.predict(patches_imgs_test, batch_size=32, verbose=2)
print("predicted images size :")
예제 #2
0
new_width = None
masks_test = None
if average_mode == True:
    patches_imgs_test, new_height, new_width = get_data_testing_overlap(
        DRIVE_test_imgs_original=DRIVE_test_imgs_original,  #original
        Imgs_to_test=int(config.get('testing settings',
                                    'full_images_to_test')),
        patch_height=patch_height,
        patch_width=patch_width,
        stride_height=stride_height,
        stride_width=stride_width)
else:
    patches_imgs_test = get_data_testing(
        DRIVE_test_imgs_original=DRIVE_test_imgs_original,  #original
        Imgs_to_test=int(config.get('testing settings',
                                    'full_images_to_test')),
        patch_height=patch_height,
        patch_width=patch_width,
    )

#================ Run the prediction of the patches ==================================
best_last = config.get('testing settings', 'best_last')
#Load the saved model
model = model_from_json(
    open(path_experiment + name_experiment + '_architecture.json').read())
model.load_weights(path_experiment + name_experiment + '_' + 'best' +
                   '_weights.h5')
#Calculate the predictions
predictions = model.predict(patches_imgs_test, batch_size=32, verbose=2)
print("predicted images size :")
print(predictions.shape)
예제 #3
0
def testing(channels, height, width, img_dir, borderMasks_dir, path_data = "./dataset_training/"):
    
    img = np.empty((height, width, channels))
    border_mask = np.empty((height, width))

    if not os.path.exists(path_data):
        os.makedirs(path_data)
 
    #with path, subdirs, file in os.walk(self.img_dir):
    img = Image.open(img_dir)       
    b_mask = Image.open(borderMasks_dir)
    #border_mask = np.reshape(border_mask,(1,height,width))

    assert(np.max(border_masks)==255)
    assert(np.min(border_masks)==0)

    """
    img = np.transpose(img,(0,3,1,2))
    assert(img.shape == (channels,height,width))
    border_mask = np.reshape(border_masks,(1,height,width))
    assert(border_mask.shape == (1,height,width))
    """

    print ("saving train datasets")
    write_hdf5(img, path_data + "img.hdf5")
    write_hdf5(border_mask, path_data + "borderMask.hdf5")
    

    #original test images (for FOV selection)
    DRIVE_test_imgs_original = path_data + 'img.hdf5'
    test_imgs_orig = load_hdf5(DRIVE_test_imgs_original)
    full_img_height = test_imgs_orig.shape[2]
    full_img_width = test_imgs_orig.shape[3]

    #the border masks provided by the DRIVE
    DRIVE_test_border_masks = path_data + 'borderMask.hdf5'
    test_border_masks = load_hdf5(DRIVE_test_border_masks)
    # dimension of the patches
    patch_height = 64
    patch_width  = 64
    #the stride in case output with average
    stride_height = 5
    stride_width  = 5
    assert (stride_height < patch_height and stride_width < patch_width)
    #model name
    name_experiment = 'test'
    path_experiment = './' + name_experiment +'/'
    #N full images to be predicted
    Imgs_to_test = 2
    #Grouping of the predicted images
    N_visual = 1
    #====== average mode ===========
    average_mode = True

    #============ Load the data and divide in patches
    patches_imgs_test = None
    new_height = None
    new_width = None
    masks_test  = None
    patches_masks_test = None
    if average_mode == True:
        patches_imgs_test, new_height, new_width, masks_test = get_data_testing_overlap(
            DRIVE_test_imgs_original = DRIVE_test_imgs_original,  #original
            DRIVE_test_groudTruth = path_data + 'DRIVE_dataset_groundTruth_test.hdf5',  #masks
            Imgs_to_test = 20,
            patch_height = patch_height,
            patch_width = patch_width,
            stride_height = stride_height,
            stride_width = stride_width
        )
    else:
        patches_imgs_test, patches_masks_test = get_data_testing(
            DRIVE_test_imgs_original = DRIVE_test_imgs_original,  #original
            DRIVE_test_groudTruth = path_data + 'DRIVE_dataset_groundTruth_test.hdf5',  #masks
            Imgs_to_test = 20,
            patch_height = patch_height,
            patch_width = patch_width,
        )



    #================ Run the prediction of the patches ==================================
    best_last = 'best'
    patches_imgs_test = np.einsum('klij->kijl', patches_imgs_test)

    model = M.BCDU_net_D3(input_size = (64,64,1))
    model.summary()
    model.load_weights('weight_lstm.hdf5')
    predictions = model.predict(patches_imgs_test, batch_size=16, verbose=1)

    predictions = np.einsum('kijl->klij', predictions)
    print(patches_imgs_test.shape)

    pred_patches = predictions

    print ("predicted images size :")
    print (predictions.shape)

    #===== Convert the prediction arrays in corresponding images

    #========== Elaborate and visualize the predicted images ====================
    pred_imgs = None
    orig_imgs = None
    gtruth_masks = None
    if average_mode == True:
        pred_imgs = recompone_overlap(pred_patches, new_height, new_width, stride_height, stride_width)# predictions
        orig_imgs = my_PreProc(test_imgs_orig[0:pred_imgs.shape[0],:,:,:])    #originals
        gtruth_masks = masks_test  #ground truth masks
    else:
        pred_imgs = recompone(pred_patches,13,12)       # predictions
        orig_imgs = recompone(patches_imgs_test,13,12)  # originals
        gtruth_masks = recompone(patches_masks_test,13,12)  #masks
    # apply the DRIVE masks on the repdictions #set everything outside the FOV to zero!!
    print('killing border')
    kill_border(pred_imgs, test_border_masks)  #DRIVE MASK  #only for visualization
    ## back to original dimensions
    orig_imgs = orig_imgs[:,:,0:full_img_height,0:full_img_width]
    pred_imgs = pred_imgs[:,:,0:full_img_height,0:full_img_width]
    gtruth_masks = gtruth_masks[:,:,0:full_img_height,0:full_img_width]
    np.save('pred_imgs',pred_imgs)
    print ("Orig imgs shape: " +str(orig_imgs.shape))
    print ("pred imgs shape: " +str(pred_imgs.shape))
    print ("Gtruth imgs shape: " +str(gtruth_masks.shape))

    np.save('resutls', pred_imgs)
    np.save('origin', gtruth_masks)
    assert (orig_imgs.shape[0]==pred_imgs.shape[0] and orig_imgs.shape[0]==gtruth_masks.shape[0])
    N_predicted = orig_imgs.shape[0]
    group = N_visual
    assert (N_predicted%group==0)



    #====== Evaluate the results
    print ("\n\n========  Evaluate the results =======================")
    #predictions only inside the FOV
    y_scores, y_true = pred_only_FOV(pred_imgs,gtruth_masks, test_border_masks)  #returns data only inside the FOV
    print(y_scores.shape)

    print ("Calculating results only inside the FOV:")
    print ("y scores pixels: " +str(y_scores.shape[0]) +" (radius 270: 270*270*3.14==228906), including background around retina: " +str(pred_imgs.shape[0]*pred_imgs.shape[2]*pred_imgs.shape[3]) +" (584*565==329960)")
    print ("y true pixels: " +str(y_true.shape[0]) +" (radius 270: 270*270*3.14==228906), including background around retina: " +str(gtruth_masks.shape[2]*gtruth_masks.shape[3]*gtruth_masks.shape[0])+" (584*565==329960)")

    #Area under the ROC curve
    fpr, tpr, thresholds = roc_curve((y_true), y_scores)
    AUC_ROC = roc_auc_score(y_true, y_scores)
    # test_integral = np.trapz(tpr,fpr) #trapz is numpy integration
    print ("\nArea under the ROC curve: " +str(AUC_ROC))
    roc_curve =plt.figure()
    plt.plot(fpr,tpr,'-',label='Area Under the Curve (AUC = %0.4f)' % AUC_ROC)
    plt.title('ROC curve')
    plt.xlabel("FPR (False Positive Rate)")
    plt.ylabel("TPR (True Positive Rate)")
    plt.legend(loc="lower right")
    plt.savefig(path_experiment+"ROC.png")

    #Precision-recall curve
    precision, recall, thresholds = precision_recall_curve(y_true, y_scores)
    precision = np.fliplr([precision])[0]  #so the array is increasing (you won't get negative AUC)
    recall = np.fliplr([recall])[0]  #so the array is increasing (you won't get negative AUC)
    AUC_prec_rec = np.trapz(precision,recall)
    print ("\nArea under Precision-Recall curve: " +str(AUC_prec_rec))
    prec_rec_curve = plt.figure()
    plt.plot(recall,precision,'-',label='Area Under the Curve (AUC = %0.4f)' % AUC_prec_rec)
    plt.title('Precision - Recall curve')
    plt.xlabel("Recall")
    plt.ylabel("Precision")
    plt.legend(loc="lower right")
    plt.savefig(path_experiment+"Precision_recall.png")

    #Confusion matrix
    threshold_confusion = 0.5
    print ("\nConfusion matrix:  Custom threshold (for positive) of " +str(threshold_confusion))
    y_pred = np.empty((y_scores.shape[0]))
    for i in range(y_scores.shape[0]):
        if y_scores[i]>=threshold_confusion:
            y_pred[i]=1
        else:
            y_pred[i]=0
    confusion = confusion_matrix(y_true, y_pred)
    print (confusion)
    accuracy = 0
    if float(np.sum(confusion))!=0:
        accuracy = float(confusion[0,0]+confusion[1,1])/float(np.sum(confusion))
    print ("Global Accuracy: " +str(accuracy))
    specificity = 0
    if float(confusion[0,0]+confusion[0,1])!=0:
        specificity = float(confusion[0,0])/float(confusion[0,0]+confusion[0,1])
    print ("Specificity: " +str(specificity))
    sensitivity = 0
    if float(confusion[1,1]+confusion[1,0])!=0:
        sensitivity = float(confusion[1,1])/float(confusion[1,1]+confusion[1,0])
    print ("Sensitivity: " +str(sensitivity))
    precision = 0
    if float(confusion[1,1]+confusion[0,1])!=0:
        precision = float(confusion[1,1])/float(confusion[1,1]+confusion[0,1])
    print ("Precision: " +str(precision))

    #Jaccard similarity index
    jaccard_index = jaccard_similarity_score(y_true, y_pred, normalize=True)
    print ("\nJaccard similarity score: " +str(jaccard_index))

    #F1 score
    F1_score = f1_score(y_true, y_pred, labels=None, average='binary', sample_weight=None)
    print ("\nF1 score (F-measure): " +str(F1_score))

    #Save the results
    file_perf = open(path_experiment+'performances.txt', 'w')
    file_perf.write("Area under the ROC curve: "+str(AUC_ROC)
                    + "\nArea under Precision-Recall curve: " +str(AUC_prec_rec)
                    + "\nJaccard similarity score: " +str(jaccard_index)
                    + "\nF1 score (F-measure): " +str(F1_score)
                    +"\n\nConfusion matrix:"
                    +str(confusion)
                    +"\nACCURACY: " +str(accuracy)
                    +"\nSENSITIVITY: " +str(sensitivity)
                    +"\nSPECIFICITY: " +str(specificity)
                    +"\nPRECISION: " +str(precision)
                    )
    file_perf.close()

    # Visualize
    fig,ax = plt.subplots(10,3,figsize=[15,15])

    for idx in range(10):
        ax[idx, 0].imshow(np.uint8(np.squeeze((orig_imgs[idx]))))
        ax[idx, 1].imshow(np.squeeze(gtruth_masks[idx]), cmap='gray')
        ax[idx, 2].imshow(np.squeeze(pred_imgs[idx]), cmap='gray')

    plt.savefig(path_experiment+'sample_results.png')
예제 #4
0
파일: evaluate.py 프로젝트: xclmj/BCDU-Net
patches_masks_test = None
if average_mode == True:
    patches_imgs_test, new_height, new_width, masks_test = get_data_testing_overlap(
        DRIVE_test_imgs_original = DRIVE_test_imgs_original,  #original
        DRIVE_test_groudTruth = path_data + 'DRIVE_dataset_groundTruth_test.hdf5',  #masks
        Imgs_to_test = 20,
        patch_height = patch_height,
        patch_width = patch_width,
        stride_height = stride_height,
        stride_width = stride_width
    )
else:
    patches_imgs_test, patches_masks_test = get_data_testing(
        DRIVE_test_imgs_original = DRIVE_test_imgs_original,  #original
        DRIVE_test_groudTruth = path_data + 'DRIVE_dataset_groundTruth_test.hdf5',  #masks
        Imgs_to_test = 20,
        patch_height = patch_height,
        patch_width = patch_width,
    )






#================ Run the prediction of the patches ==================================
best_last = 'best'
patches_imgs_test = np.einsum('klij->kijl', patches_imgs_test)

model = M.BCDU_net_D3(input_size = (64,64,1))
model.summary()
예제 #5
0
patches_masks_test = None
if average_mode == True:
    patches_imgs_test, new_height, new_width, masks_test = get_data_testing_overlap(
        DRIVE_test_imgs_original=DRIVE_test_imgs_original,  #original
        DRIVE_test_groudTruth=path_local + test_groundTruth,  #masks
        Imgs_to_test=Imgs_to_test,
        patch_height=patch_height,
        patch_width=patch_width,
        stride_height=stride_height,
        stride_width=stride_width)
    #masks_test = np.rollaxis(masks_test, 1, 2)
else:
    patches_imgs_test, patches_masks_test = get_data_testing(
        DRIVE_test_imgs_original=DRIVE_test_imgs_original,  #original
        DRIVE_test_groudTruth=path_local + test_groundTruth,  #masks
        Imgs_to_test=Imgs_to_test,
        patch_height=patch_height,
        patch_width=patch_width,
    )

#load model and weights here
pred_patches = pred_images

pred_imgs = None
orig_imgs = None
gtruth_masks = None
if average_mode == True:
    pred_imgs = recompone_overlap(pred_patches, new_height, new_width,
                                  stride_height, stride_width)  # predictions
    orig_imgs = my_PreProc(
        test_imgs_orig[0:pred_imgs.shape[0], :, :, :])  #originals
예제 #6
0
path_experiment = './' +name_experiment +'/'
#Grouping of the predicted images
N_visual = int(config.get('testing settings', 'N_group_visual'))

#============ Load the data and divide in patches
patches_imgs_test = None
new_height = None
new_width = None
masks_test  = None
patches_masks_test = None
if with_mash:
    print("Using mask images.")
    patches_imgs_test, patches_masks_test, test_border_masks = get_data_testing(
        DRIVE_test_imgs_original = DRIVE_test_imgs_original,  #original
        DRIVE_test_groudTruth = path_data + config.get('data paths', 'test_groundTruth'),  #masks
        DRIVE_test_border = test_border_masks_path,
        batch_h = patch_height,
        batch_w = patch_width
    )
else:
    print("Without using mask images.")
    patches_imgs_test, patches_masks_test = get_data_testing(
        DRIVE_test_imgs_original = DRIVE_test_imgs_original,  #original
        DRIVE_test_groudTruth = path_data + config.get('data paths', 'test_groundTruth'),  #masks
        DRIVE_test_border = "",
        batch_h = patch_height,
        batch_w = patch_width
    )

print("patches_imgs_test shape :", patches_imgs_test.shape)
print("patches_masks_test shape :", patches_masks_test.shape)
예제 #7
0
patches_masks_test = None
if average_mode == True:
    patches_imgs_test, new_height, new_width, masks_test = get_data_testing_overlap(
        DRIVE_test_imgs_original = DRIVE_test_imgs_original,  #original
        DRIVE_test_groudTruth = path_data + config.get('data paths', 'test_groundTruth'),  #masks
        Imgs_to_test = int(config.get('testing settings', 'full_images_to_test')),
        patch_height = patch_height,
        patch_width = patch_width,
        stride_height = stride_height,
        stride_width = stride_width
    )
else:
    patches_imgs_test, patches_masks_test = get_data_testing(
        DRIVE_test_imgs_original = DRIVE_test_imgs_original,  #original
        DRIVE_test_groudTruth = path_data + config.get('data paths', 'test_groundTruth'),  #masks
        Imgs_to_test = int(config.get('testing settings', 'full_images_to_test')),
        patch_height = patch_height,
        patch_width = patch_width,
    )



#================ Run the prediction of the patches ==================================
best_last = config.get('testing settings', 'best_last')
#Load the saved model
model = model_from_json(open(path_experiment+name_experiment +'_architecture.json').read())
model.load_weights(path_experiment+name_experiment + '_'+best_last+'_weights.h5')
#Calculate the predictions
predictions = model.predict(patches_imgs_test, batch_size=32, verbose=2)
print "predicted images size :"
print predictions.shape
예제 #8
0
new_width = None
masks_test = None
patches_masks_test = None
if average_mode == True:
    patches_imgs_test, new_height, new_width, masks_test = get_data_testing_overlap(
        test_imgs_original=test_imgs_original,  # original
        test_groudTruth=path_data + config.get('data paths', 'test_groundTruth'),  # masks
        patch_height=patch_height,
        patch_width=patch_width,
        stride_height=stride_height,
        stride_width=stride_width
    )
else:
    patches_imgs_test, patches_masks_test = get_data_testing(
        test_imgs_original=test_imgs_original,  # original
        test_groudTruth=path_data + config.get('data paths', 'test_groundTruth'),  # masks
        patch_height=patch_height,
        patch_width=patch_width,
    )

# ================ Run the prediction of the patches ==================================
batch_size = int(config.get('training settings', 'batch_size'))

model = MODELS[name_experiment](n_channels=1, n_classes=1)

weight_files = sorted(glob(join(TMP_DIR, 'checkpoint_epoch_*.pth')), reverse=True)
# weight_files = []
# weight_files.append(join(TMP_DIR, 'checkpoint_epoch_006.pth'))
print("loaded:" + weight_files[0])
if mode == 'cpu':
    model.load_state_dict(torch.load(weight_files[0],
                                     map_location={'cuda:0': 'cpu', 'cuda:1': 'cpu',