def test_general(self): experiment = read_text_file('data/text/one_parameter_6.txt') # initialize model generator model_generator = ModelGenerator(experiment, RefiningModeler()) # create models from data model_generator.model_all() models = experiment.modelers[0].models cp0 = Callpath('met1'), Metric('') self.assertIsInstance(models[cp0].hypothesis, ConstantHypothesis) self.assertAlmostEqual(models[cp0].hypothesis.function.constant_coefficient, 4.068) cp1 = Callpath('met2'), Metric('') self.assertIsInstance(models[cp1].hypothesis, SingleParameterHypothesis) self.assertEqual(len(models[cp1].hypothesis.function.compound_terms), 1) self.assertEqual(len(models[cp1].hypothesis.function.compound_terms[0].simple_terms), 1) self.assertEqual(models[cp1].hypothesis.function.compound_terms[0].simple_terms[0].term_type, 'polynomial') self.assertAlmostEqual(models[cp1].hypothesis.function.compound_terms[0].simple_terms[0].exponent, 2.0) cp2 = Callpath('met3'), Metric('') self.assertIsInstance(models[cp2].hypothesis, SingleParameterHypothesis) self.assertEqual(len(models[cp2].hypothesis.function.compound_terms), 1) self.assertEqual(len(models[cp2].hypothesis.function.compound_terms[0].simple_terms), 1) self.assertEqual(models[cp2].hypothesis.function.compound_terms[0].simple_terms[0].term_type, 'polynomial') self.assertAlmostEqual(models[cp2].hypothesis.function.compound_terms[0].simple_terms[0].exponent, 2.0) cp3 = Callpath('met4'), Metric('') self.assertIsInstance(models[cp3].hypothesis, SingleParameterHypothesis) self.assertEqual(len(models[cp3].hypothesis.function.compound_terms), 1) self.assertEqual(len(models[cp3].hypothesis.function.compound_terms[0].simple_terms), 1) self.assertEqual(models[cp3].hypothesis.function.compound_terms[0].simple_terms[0].term_type, 'polynomial') self.assertAlmostEqual(models[cp3].hypothesis.function.compound_terms[0].simple_terms[0].exponent, 2.0)
def test_single_parameter(self): experiment = read_cube_file('data/cubeset/single_parameter', 'weak') self.assertListEqual([Parameter('x')], experiment.parameters) self.assertSetEqual( { Coordinate(1), Coordinate(10), Coordinate(25), Coordinate(50), Coordinate(100), Coordinate(250), Coordinate(500), Coordinate(1000), Coordinate(2000) }, set(experiment.coordinates)) self.assertSetEqual( { Callpath('main'), Callpath('main->init_mat'), Callpath('main->zero_mat'), Callpath('main->mat_mul') }, set(experiment.callpaths)) self.assertSetEqual( { Metric('visits'), Metric('time'), Metric('min_time'), Metric('max_time'), Metric('PAPI_FP_OPS'), Metric('PAPI_L3_TCM'), Metric('PAPI_L2_TCM') }, set(experiment.metrics)) read_cube_file('data/cubeset/single_parameter', 'strong')
def deserialize_callpath(id_mappings, ioHelper): id = ioHelper.readId() region_id = ioHelper.readId() parent_id = ioHelper.readId() region_name = id_mappings.region_mapping[region_id] if parent_id != -1: parent = id_mappings.callpath_mapping[parent_id] callpath = Callpath(parent.name + '->' + region_name) else: callpath = Callpath(region_name) id_mappings.callpath_mapping[id] = callpath return callpath
def test_3parameters_reversed(self): experiment = read_text_file('data/text/three_parameter_1.txt') modeler = MultiParameterModeler() measurements = experiment.measurements[(Callpath('reg'), Metric('metr'))] measurements = list(reversed(measurements)) f_msm = modeler.find_best_measurement_points(measurements) self.assertEqual(len(f_msm), 3) self.assertListEqual([m.coordinate for m in f_msm[0]], [ Coordinate(60), Coordinate(50), Coordinate(40), Coordinate(30), Coordinate(20) ]) self.assertListEqual([m.coordinate for m in f_msm[1]], [ Coordinate(5), Coordinate(4), Coordinate(3), Coordinate(2), Coordinate(1) ]) self.assertListEqual([m.coordinate for m in f_msm[2]], [ Coordinate(500), Coordinate(400), Coordinate(300), Coordinate(200), Coordinate(100) ])
def test_3parameters_bands(self): experiment = read_jsonlines_file( 'data/jsonlines/matrix_3p_bands.jsonl') modeler = MultiParameterModeler() measurements = experiment.measurements[(Callpath('<root>'), Metric('metr'))] f_msm = modeler.find_best_measurement_points(measurements) self.assertEqual(len(f_msm), 3) self.assertListEqual([m.coordinate for m in f_msm[0]], [ Coordinate(1), Coordinate(2), Coordinate(3), Coordinate(4), Coordinate(5) ]) self.assertListEqual([0] + [1] * 4, [m.mean for m in f_msm[0]]) self.assertListEqual([m.coordinate for m in f_msm[1]], [ Coordinate(1), Coordinate(2), Coordinate(3), Coordinate(4), Coordinate(5) ]) self.assertListEqual([0.5] + [2.5] * 4, [m.mean for m in f_msm[1]]) self.assertListEqual([m.coordinate for m in f_msm[2]], [ Coordinate(1), Coordinate(2), Coordinate(3), Coordinate(4), Coordinate(5) ]) self.assertListEqual([0] + [4] * 4, [m.mean for m in f_msm[2]])
def test_2parameters_random(self): experiment = read_text_file('data/text/two_parameter_1.txt') modeler = MultiParameterModeler() measurements = experiment.measurements[(Callpath('reg'), Metric('metr'))] for _ in range(len(measurements)): shuffle(measurements) f_msm = modeler.find_first_measurement_points(measurements) self.assertEqual(len(f_msm), 2) self.assertSetEqual( set(m.coordinate for m in f_msm[0]), { Coordinate(20), Coordinate(30), Coordinate(40), Coordinate(50), Coordinate(60) }) self.assertSetEqual( set(m.coordinate for m in f_msm[1]), { Coordinate(1), Coordinate(2), Coordinate(3), Coordinate(4), Coordinate(5) })
def test_3parameters_sparse(self): experiment = read_jsonlines_file('data/jsonlines/matrix_3p.jsonl') modeler = MultiParameterModeler() measurements = experiment.measurements[(Callpath('<root>'), Metric('metr'))] for _ in range(len(measurements)): shuffle(measurements) f_msm = modeler.find_best_measurement_points(measurements) self.assertEqual(len(f_msm), 3) self.assertSetEqual(set(m.coordinate for m in f_msm[0]), { Coordinate(1), Coordinate(2), Coordinate(3), Coordinate(4), Coordinate(5) }) self.assertListEqual([1] * 5, [m.mean for m in f_msm[0]]) self.assertSetEqual(set(m.coordinate for m in f_msm[1]), { Coordinate(1), Coordinate(2), Coordinate(3), Coordinate(4), Coordinate(5) }) self.assertListEqual([1] * 5, [m.mean for m in f_msm[1]]) self.assertSetEqual(set(m.coordinate for m in f_msm[2]), { Coordinate(1), Coordinate(2), Coordinate(3), Coordinate(4), Coordinate(5) }) self.assertListEqual([1] * 5, [m.mean for m in f_msm[2]])
def test_2parameters_reversed(self): experiment = read_text_file('data/text/two_parameter_1.txt') modeler = MultiParameterModeler() measurements = experiment.measurements[(Callpath('reg'), Metric('metr'))] measurements = list(reversed(measurements)) f_msm = modeler.find_best_measurement_points(measurements) self.assertEqual(len(f_msm), 2) self.assertListEqual([m.coordinate for m in f_msm[0]], [ Coordinate((60, )), Coordinate((50, )), Coordinate((40, )), Coordinate((30, )), Coordinate((20, )) ]) self.assertListEqual([m.coordinate for m in f_msm[1]], [ Coordinate((5, )), Coordinate((4, )), Coordinate((3, )), Coordinate((2, )), Coordinate((1, )) ])
def test_read_2(self): Parameter.ID_COUNTER = itertools.count() experiment = read_json_file("data/json/new/input2.json") x = Parameter('x') y = Parameter('y') self.assertListEqual(experiment.parameters, [x, y]) self.assertListEqual(experiment.coordinates, [ Coordinate(4, 10), Coordinate(8, 20), Coordinate(16, 30), Coordinate(32, 40), Coordinate(64, 50) ]) self.assertListEqual(experiment.metrics, [Metric('time'), Metric('visits')]) self.assertListEqual( experiment.callpaths, [Callpath('sweep'), Callpath('sweep2')])
def test_read_1_json(self): Parameter.ID_COUNTER = itertools.count() experiment = read_json_file("data/jsonlines/test1.jsonl") self.assertListEqual([Parameter('x'), Parameter('y')], experiment.parameters) self.assertListEqual([0, 1], [p.id for p in experiment.parameters]) self.assertListEqual([ Coordinate(x, y) for x in range(1, 5 + 1) for y in range(1, 5 + 1) ], experiment.coordinates) self.assertListEqual([Metric('metr')], experiment.metrics) self.assertListEqual([Callpath('<root>')], experiment.callpaths)
def test_read_2(self): Parameter.ID_COUNTER = itertools.count() experiment = read_jsonlines_file("data/jsonlines/test2.jsonl") self.assertListEqual([Parameter('p'), Parameter('n')], experiment.parameters) self.assertListEqual([0, 1], [p.id for p in experiment.parameters]) self.assertListEqual([ Coordinate(x, y) for x in [16, 32, 64, 128, 256] for y in [100, 200, 300, 400, 500] ], experiment.coordinates) self.assertListEqual([Metric('metr')], experiment.metrics) self.assertListEqual([Callpath('<root>')], experiment.callpaths)
def read_talpas_file(path, progress_bar=DUMMY_PROGRESS): # create an experiment object to save the date loaded from the text file experiment = Experiment() complete_data = {} parameters = None progress_bar.total += os.path.getsize(path) # read talpas file into complete_data with open(path) as file: progress_bar.step('Reading file') for ln, line in enumerate(file): progress_bar.update(len(line)) if line.isspace(): continue line = line.replace(';', ',') try: data = json.loads(line) except JSONDecodeError as error: raise FileFormatError( f'Decoding of line {ln} failed: {str(error).replace(",", ";")}. Line: "{line}"' ) try: key = Callpath(data['callpath']), Metric(data['metric']) if parameters is None: parameters = [ Parameter(p) for p in data['parameters'].keys() ] coordinate = Coordinate(data['parameters'][p.name] for p in parameters) io_helper.append_to_repetition_dict(complete_data, key, coordinate, data['value'], progress_bar) except KeyError as error: raise FileFormatError( f'Missing property in line {ln}: {str(error)}. Line: "{line}"' ) # create experiment io_helper.repetition_dict_to_experiment(complete_data, experiment, progress_bar) for p in parameters: experiment.add_parameter(p) call_tree = create_call_tree(experiment.callpaths, progress_bar) experiment.call_tree = call_tree io_helper.validate_experiment(experiment, progress_bar) return experiment
def test_matrix3p(self): Parameter.ID_COUNTER = itertools.count() experiment = read_jsonlines_file("data/jsonlines/matrix_3p.jsonl") self.assertListEqual( [Parameter('x'), Parameter('y'), Parameter('z')], experiment.parameters) self.assertListEqual([0, 1, 2], [p.id for p in experiment.parameters]) self.assertListEqual([Coordinate(x, 1, 1) for x in range(1, 5 + 1)] + [Coordinate(1, x, 1) for x in range(2, 5 + 1)] + [Coordinate(1, 1, x) for x in range(2, 5 + 1)], experiment.coordinates) self.assertListEqual([Metric('metr')], experiment.metrics) self.assertListEqual([Callpath('<root>')], experiment.callpaths)
def test_read_1(self): Parameter.ID_COUNTER = itertools.count() experiment = read_json_file("data/json/input_1.JSON") self.assertListEqual(experiment.parameters, [Parameter('x')]) self.assertListEqual([p.id for p in experiment.parameters], [0]) self.assertListEqual(experiment.coordinates, [ Coordinate(4), Coordinate(8), Coordinate(16), Coordinate(32), Coordinate(64) ]) self.assertListEqual(experiment.metrics, [Metric('time')]) self.assertListEqual(experiment.callpaths, [Callpath('sweep')])
def make_callpath_mapping(cnodes): callpaths = {} def walk_tree(parent_cnode, parent_name): for cnode in parent_cnode.get_children(): name = cnode.region.name path_name = '->'.join((parent_name, name)) callpaths[cnode.id] = Callpath(path_name) walk_tree(cnode, path_name) for root_cnode in cnodes: name = root_cnode.region.name callpath = Callpath(name) callpaths[root_cnode.id] = callpath walk_tree(root_cnode, name) return callpaths
def _read_new_json_file(experiment, json_data, progress_bar): parameter_data = json_data["parameters"] for p in parameter_data: parameter = Parameter(p) experiment.add_parameter(parameter) measurements_data = json_data["measurements"] for callpath_name, data in progress_bar(measurements_data.items()): for metric_name, measurements in data.items(): for measurement in measurements: coordinate = Coordinate(measurement['point']) experiment.add_coordinate(coordinate) callpath = Callpath(callpath_name) experiment.add_callpath(callpath) metric = Metric(metric_name) experiment.add_metric(metric) measurement = Measurement(coordinate, callpath, metric, measurement['values']) experiment.add_measurement(measurement)
def test_3parameters_bands_incomplete(self): experiment = read_jsonlines_file('data/jsonlines/matrix_3p_bands_incomplete.jsonl') modeler = MultiParameterModeler() measurements = experiment.measurements[(Callpath('<root>'), Metric('metr'))] f_msm = modeler.find_best_measurement_points(measurements) self.assertEqual(len(f_msm), 3) self.assertListEqual([m.coordinate for m in f_msm[0]], [ Coordinate(c) for c in [1, 3, 4, 5, 6] ]) self.assertListEqual([0] + [1] * 4, [m.mean for m in f_msm[0]]) self.assertListEqual([m.coordinate for m in f_msm[1]], [ Coordinate(c) for c in range(1, 5 + 1) ]) self.assertListEqual([0] + [2] * 4, [m.mean for m in f_msm[1]]) self.assertListEqual([m.coordinate for m in f_msm[2]], [ Coordinate(c) for c in range(1, 5 + 1) ]) self.assertListEqual([0] + [4] * 4, [m.mean for m in f_msm[2]]) measurements.reverse() f_msm = modeler.find_best_measurement_points(measurements) self.assertEqual(len(f_msm), 3) self.assertListEqual([m.coordinate for m in f_msm[0]], [ Coordinate(c) for c in reversed([1, 3, 4, 5, 6]) ]) self.assertListEqual([1] * 4 + [0], [m.mean for m in f_msm[0]]) self.assertListEqual([m.coordinate for m in f_msm[1]], [ Coordinate(c) for c in [6, 5, 4, 3, 2] ]) self.assertListEqual([3] * 5, [m.mean for m in f_msm[1]]) self.assertListEqual([m.coordinate for m in f_msm[2]], [ Coordinate(c) for c in reversed(range(1, 5 + 1)) ]) self.assertListEqual([4] * 4 + [0], [m.mean for m in f_msm[2]])
def test_sparse_experiment(self): experiment = read_extrap3_experiment('data/input/experiment_3_sparse') self.assertListEqual([Parameter('x'), Parameter('y'), Parameter('z')], experiment.parameters) self.assertSetEqual({Coordinate(1, 1, 1), Coordinate(1, 1, 10), Coordinate(1, 1, 25), Coordinate(1, 10, 1), Coordinate(1, 10, 10), Coordinate(1, 10, 25), Coordinate(1, 25, 1), Coordinate(1, 25, 10), Coordinate(1, 25, 25), Coordinate(10, 1, 1), Coordinate(10, 1, 10), Coordinate(10, 1, 25), Coordinate(10, 10, 1), Coordinate(10, 10, 10), Coordinate(10, 10, 25), Coordinate(10, 25, 1), Coordinate(10, 25, 10), Coordinate(10, 25, 25), Coordinate(25, 1, 1), Coordinate(25, 1, 10), Coordinate(25, 1, 25), Coordinate(25, 10, 1), Coordinate(25, 10, 10), Coordinate(25, 10, 25), Coordinate(25, 25, 1), Coordinate(25, 25, 10), Coordinate(25, 25, 25) }, set(experiment.coordinates)) self.assertSetEqual({Callpath('main'), Callpath('main->init_mat'), Callpath('main->zero_mat'), Callpath('main->mat_mul')}, set(experiment.callpaths)) call_tree = CallTree() main = Node('main', Callpath('main')) call_tree.add_child_node(main) init_mat = Node('init_mat', Callpath('main->init_mat')) main.add_child_node(init_mat) zero_mat = Node('zero_mat', Callpath('main->zero_mat')) main.add_child_node(zero_mat) mat_mul = Node('mat_mul', Callpath('main->mat_mul')) main.add_child_node(mat_mul)
def test_sparse_matrix2p(self): Parameter.ID_COUNTER = itertools.count() experiment = read_jsonlines_file( "data/jsonlines/sparse_matrix_2p.jsonl") self.assertListEqual([Parameter('x'), Parameter('y')], experiment.parameters) self.assertListEqual([0, 1], [p.id for p in experiment.parameters]) self.assertListEqual([ Coordinate(20, 1), Coordinate(30, 1), Coordinate(30, 2), Coordinate(40, 1), Coordinate(40, 2), Coordinate(40, 3), Coordinate(50, 1), Coordinate(50, 2), Coordinate(50, 3), Coordinate(50, 4), Coordinate(60, 1), Coordinate(60, 2), Coordinate(60, 3), Coordinate(60, 4), Coordinate(60, 5), Coordinate(70, 2), Coordinate(70, 3), Coordinate(70, 4), Coordinate(70, 5), Coordinate(80, 3), Coordinate(80, 4), Coordinate(80, 5), Coordinate(90, 4), Coordinate(90, 5), Coordinate(100, 5) ], experiment.coordinates) self.assertListEqual([Metric('metr')], experiment.metrics) self.assertListEqual([Callpath('<root>')], experiment.callpaths)
def main(): experiment = text_file_reader.read_text_file( "tests/data/text/two_parameter_1.txt") modeller = GPUDirectMultiParameterModeler() model = modeller.create_model(experiment.measurements[(Callpath('reg'), Metric('metr'))])
def test_multi_parameter(self): experiment = read_cube_file('data/cubeset/multi_parameter', 'weak') self.assertListEqual( [Parameter('x'), Parameter('y'), Parameter('z')], experiment.parameters) self.assertSetEqual( { Coordinate(1, 1, 1), Coordinate(1, 1, 10), Coordinate(1, 1, 25), Coordinate(1, 10, 1), Coordinate(1, 10, 10), Coordinate(1, 10, 25), Coordinate(1, 25, 1), Coordinate(1, 25, 10), Coordinate(1, 25, 25), Coordinate(10, 1, 1), Coordinate(10, 1, 10), Coordinate(10, 1, 25), Coordinate(10, 10, 1), Coordinate(10, 10, 10), Coordinate(10, 10, 25), Coordinate(10, 25, 1), Coordinate(10, 25, 10), Coordinate(10, 25, 25), Coordinate(25, 1, 1), Coordinate(25, 1, 10), Coordinate(25, 1, 25), Coordinate(25, 10, 1), Coordinate(25, 10, 10), Coordinate(25, 10, 25), Coordinate(25, 25, 1), Coordinate(25, 25, 10), Coordinate(25, 25, 25) }, set(experiment.coordinates)) self.assertSetEqual( { Callpath('main'), Callpath('main->init_mat'), Callpath('main->zero_mat'), Callpath('main->mat_mul') }, set(experiment.callpaths)) call_tree = CallTree() main = Node('main', Callpath('main')) call_tree.add_child_node(main) init_mat = Node('init_mat', Callpath('main->init_mat')) main.add_child_node(init_mat) zero_mat = Node('zero_mat', Callpath('main->zero_mat')) main.add_child_node(zero_mat) mat_mul = Node('mat_mul', Callpath('main->mat_mul')) main.add_child_node(mat_mul) self.assertEqual(call_tree, experiment.call_tree) self.assertSetEqual( { Metric('visits'), Metric('time'), Metric('min_time'), Metric('max_time'), Metric('PAPI_FP_OPS'), Metric('PAPI_L3_TCM'), Metric('PAPI_L2_TCM') }, set(experiment.metrics)) read_cube_file('data/cubeset/multi_parameter', 'strong')
def walk_tree(parent_cnode, parent_name): for cnode in parent_cnode.get_children(): name = cnode.region.name path_name = '->'.join((parent_name, name)) callpaths[cnode.id] = Callpath(path_name) walk_tree(cnode, path_name)
def _read_legacy_json_file(experiment, json_data, progress_bar): # read parameters parameter_data = json_data["parameters"] parameter_data = sorted(parameter_data, key=lambda x: x["id"]) logging.debug("Number of parameters: " + str(len(parameter_data))) for i, p_data in enumerate(progress_bar(parameter_data)): parameter_name = p_data["name"] parameter = Parameter(parameter_name) experiment.add_parameter(parameter) logging.debug("Parameter " + str(i + 1) + ": " + parameter_name) # read callpaths callpath_data = json_data["callpaths"] callpath_data = sorted(callpath_data, key=lambda x: x["id"]) logging.debug("Number of callpaths: " + str(len(callpath_data))) for i, c_data in enumerate(progress_bar(callpath_data)): callpath_name = c_data["name"] callpath = Callpath(callpath_name) experiment.add_callpath(callpath) logging.debug("Callpath " + str(i + 1) + ": " + callpath_name) # read metrics metric_data = json_data["metrics"] metric_data = sorted(metric_data, key=lambda x: x["id"]) logging.debug("Number of metrics: " + str(len(metric_data))) for i, m_data in enumerate(progress_bar(metric_data)): metric_name = m_data["name"] metric = Metric(metric_name) experiment.add_metric(metric) logging.debug("Metric " + str(i + 1) + ": " + metric_name) # read coordinates coordinate_data = json_data["coordinates"] coordinate_data = sorted(coordinate_data, key=lambda x: x["id"]) logging.debug("Number of coordinates: " + str(len(coordinate_data))) for i, c_data in enumerate(progress_bar(coordinate_data)): parameter_value_pairs = c_data["parameter_value_pairs"] parameter_value_pairs = sorted(parameter_value_pairs, key=lambda x: x["parameter_id"]) coordinate = Coordinate( float(p["parameter_value"]) for p in parameter_value_pairs) experiment.add_coordinate(coordinate) logging.debug(f"Coordinate {i + 1}: {coordinate}") aggregate_data = {} # read measurements measurements_data = json_data["measurements"] logging.debug("Number of measurements: " + str(len(measurements_data))) for i, m_data in enumerate(progress_bar(measurements_data)): coordinate_id = int(m_data["coordinate_id"]) - 1 callpath_id = int(m_data["callpath_id"]) - 1 metric_id = int(m_data["metric_id"]) - 1 value = float(m_data["value"]) key = coordinate_id, callpath_id, metric_id if key in aggregate_data: aggregate_data[key].append(value) else: aggregate_data[key] = [value] for key in progress_bar(aggregate_data): coordinate_id, callpath_id, metric_id = key coordinate = experiment.coordinates[coordinate_id] callpath = experiment.callpaths[callpath_id] metric = experiment.metrics[metric_id] values = aggregate_data[key] measurement = Measurement(coordinate, callpath, metric, values) experiment.add_measurement(measurement)
def read_jsonlines_file(path, progress_bar=DUMMY_PROGRESS): # create an experiment object to save the date loaded from the text file experiment = Experiment() complete_data = {} parameters = None default_callpath = Callpath('<root>') default_metric = Metric('<default>') progress_bar.total += os.path.getsize(path) # read jsonlines file into complete_data with open(path) as file: progress_bar.step('Reading file') for ln, line in enumerate(file): progress_bar.update(len(line)) if line.isspace(): continue try: data = json.loads(line) except JSONDecodeError as error: raise FileFormatError( f'Decoding of line {ln} failed: {str(error)}. Line: "{line}"' ) try: if 'callpath' in data: callpath = Callpath(data['callpath']) else: callpath = default_callpath if 'metric' in data: metric = Metric(data['metric']) else: metric = default_metric key = callpath, metric if parameters is None: # ensures uniform order of paremeters parameters = [Parameter(p) for p in data['params'].keys()] coordinate = Coordinate(data['params'][p.name] for p in parameters) io_helper.append_to_repetition_dict(complete_data, key, coordinate, data['value'], progress_bar) except KeyError as error: raise FileFormatError( f'Missing property in line {ln}: {str(error)}. Line: "{line}"' ) # create experiment io_helper.repetition_dict_to_experiment(complete_data, experiment, progress_bar) for p in parameters: experiment.add_parameter(p) callpaths = experiment.callpaths experiment.call_tree = create_call_tree(callpaths, progress_bar) io_helper.validate_experiment(experiment, progress_bar) return experiment
def read_cube_file(dir_name, scaling_type, pbar=DUMMY_PROGRESS, selected_metrics=None): # read the paths of the cube files in the given directory with dir_name path = Path(dir_name) if not path.is_dir(): raise FileFormatError(f'Cube file path must point to a directory: {dir_name}') cubex_files = list(path.glob('*/[!.]*.cubex')) if not cubex_files: raise FileFormatError(f'No cube files were found in: {dir_name}') pbar.total += len(cubex_files) + 6 # iterate over all folders and read the cube profiles in them experiment = Experiment() pbar.step("Reading cube files") parameter_names_initial = [] parameter_names = [] parameter_values = [] parameter_dict = defaultdict(set) progress_step_size = 5 / len(cubex_files) for path_id, path in enumerate(cubex_files): pbar.update(progress_step_size) folder_name = path.parent.name logging.debug(f"Cube file: {path} Folder: {folder_name}") # create the parameters par_start = folder_name.find(".") + 1 par_end = folder_name.find(".r") par_end = None if par_end == -1 else par_end parameters = folder_name[par_start:par_end] # parameters = folder_name.split(".") # set scaling flag for experiment if path_id == 0: if scaling_type == "weak" or scaling_type == "strong": experiment.scaling = scaling_type param_list = re.split('([0-9.,]+)', parameters) param_list.remove("") parameter_names = [n for i, n in enumerate(param_list) if i % 2 == 0] parameter_value = [float(n.replace(',', '.').rstrip('.')) for i, n in enumerate(param_list) if i % 2 == 1] # check if parameter already exists if path_id == 0: parameter_names_initial = parameter_names elif parameter_names != parameter_names_initial: raise FileFormatError( f"Parameters must be the same and in the same order: {parameter_names} is not {parameter_names_initial}.") for n, v in zip(parameter_names, parameter_value): parameter_dict[n].add(v) parameter_values.append(parameter_value) # determine non-constant parameters and add them to experiment parameter_selection_mask = [] for i, p in enumerate(parameter_names): if len(parameter_dict[p]) > 1: experiment.add_parameter(Parameter(p)) parameter_selection_mask.append(i) # check number of parameters, if > 1 use weak scaling instead # since sum values for strong scaling does not work for more than 1 parameter if scaling_type == 'strong' and len(experiment.parameters) > 1: warnings.warn("Strong scaling only works for one parameter. Using weak scaling instead.") scaling_type = 'weak' experiment.scaling = scaling_type pbar.step("Reading cube files") show_warning_skipped_metrics = set() aggregated_values = defaultdict(list) # import data from cube files # optimize import memory usage by reordering files and grouping by coordinate num_points = 0 reordered_files = sorted(zip(cubex_files, parameter_values), key=itemgetter(1)) for parameter_value, point_group in groupby(reordered_files, key=itemgetter(1)): num_points += 1 # create coordinate coordinate = Coordinate(parameter_value[i] for i in parameter_selection_mask) experiment.add_coordinate(coordinate) aggregated_values.clear() for path, _ in point_group: pbar.update() with CubexParser(str(path)) as parsed: callpaths = make_callpath_mapping(parsed.get_root_cnodes()) # iterate over all metrics for cube_metric in parsed.get_metrics(): pbar.update(0) # NOTE: here we could choose which metrics to extract if selected_metrics and cube_metric.name not in selected_metrics: continue try: metric_values = parsed.get_metric_values(metric=cube_metric, cache=False) # create the metrics metric = Metric(cube_metric.name) for cnode_id in metric_values.cnode_indices: pbar.update(0) cnode = parsed.get_cnode(cnode_id) callpath = callpaths[cnode_id] # NOTE: here we can use clustering algorithm to select only certain node level values # create the measurements cnode_values = metric_values.cnode_values(cnode, convert_to_exclusive=True) # in case of weak scaling calculate mean and median over all mpi process values if scaling_type == "weak": # do NOT use generator it is slower aggregated_values[(callpath, metric)].extend(map(float, cnode_values)) # in case of strong scaling calculate the sum over all mpi process values elif scaling_type == "strong": aggregated_values[(callpath, metric)].append(float(sum(cnode_values))) # Take care of missing metrics except MissingMetricError as e: # @UnusedVariable show_warning_skipped_metrics.add(e.metric.name) logging.info( f'The cubex file {Path(*path.parts[-2:])} does not contain data for the metric "{e.metric.name}"') # add measurements to experiment for (callpath, metric), values in aggregated_values.items(): pbar.update(0) experiment.add_measurement(Measurement(coordinate, callpath, metric, values)) pbar.step("Unify calltrees") callpaths_to_merge = [] # determine common callpaths for common calltree # add common callpaths and metrics to experiment for key, value in pbar(experiment.measurements.items(), len(experiment.measurements), scale=0.1): if len(value) < num_points: callpaths_to_merge.append(key) pbar.total += 0.1 else: (callpath, metric) = key experiment.add_callpath(callpath) experiment.add_metric(metric) for key in callpaths_to_merge: (callpath, metric) = key new_callpath: Callpath = callpath new_key = key # find parent call-path while new_key not in experiment.measurements and '->' in new_callpath.name: new_callpath = Callpath(str(new_callpath).rsplit(sep='->', maxsplit=1)[0]) new_key = (new_callpath, metric) # merge parent measurements with the current measurements if new_key in experiment.measurements: measurements: Dict[Coordinate, Measurement] = {m.coordinate: m for m in experiment.measurements[new_key]} for m in experiment.measurements[key]: new_m = measurements.get(m.coordinate) if new_m: new_m.merge(m) else: m.callpath = experiment.measurements[new_key][0].callpath experiment.measurements[new_key].append(m) else: warnings.warn("Some call paths could not be integrated into the common call tree.") pbar.update(0.1) # delete current measurements del experiment.measurements[key] # determine calltree call_tree = io_helper.create_call_tree(experiment.callpaths, pbar, progress_scale=0.1) experiment.call_tree = call_tree if show_warning_skipped_metrics: warnings.warn("The following metrics were skipped because they contained no data: " f"{', '.join(show_warning_skipped_metrics)}. For more details see log.") io_helper.validate_experiment(experiment, pbar) pbar.update() return experiment
def read_text_file(path, progress_bar=DUMMY_PROGRESS): # read text file into list with open(path) as file: lines = file.readlines() # remove empty lines lines_no_space = [l for l in lines if not l.isspace()] # remove line breaks lines_no_space = [l.replace("\n", "") for l in lines_no_space] # create an experiment object to save the date loaded from the text file experiment = Experiment() # variables for parsing number_parameters = 0 last_metric = None last_callpath = Callpath("") coordinate_id = 0 if len(lines_no_space) == 0: raise FileFormatError(f'File contains no data: "{path}"') # parse text to extrap objects for i, line in enumerate(progress_bar(lines)): if line.isspace() or line.startswith('#'): continue # allow comments line = re_whitespace.sub(' ', line) # get field name field_separator_idx = line.find(" ") field_name = line[:field_separator_idx] field_value = line[field_separator_idx + 1:].strip() if field_name == "METRIC": # create a new metric if not already exists metric_name = field_value test_metric = Metric(metric_name) if test_metric not in experiment.metrics: metric = test_metric experiment.add_metric(metric) last_metric = metric else: last_metric = metric # reset the coordinate id, since moving to a new region coordinate_id = 0 elif field_name == "REGION": # create a new region if not already exists callpath_name = field_value callpath = Callpath(callpath_name) experiment.add_callpath(callpath) last_callpath = callpath # reset the coordinate id, since moving to a new region coordinate_id = 0 elif field_name == "DATA": if last_metric is None: last_metric = Metric("") # create a new data set data_string = field_value data_list = data_string.split(" ") values = [float(d) for d in data_list] if 1 <= number_parameters <= 4: # create one measurement per repetition if coordinate_id >= len(experiment.coordinates): raise FileFormatError( f'To many DATA lines ({coordinate_id}) for the number of POINTS ' f'({len(experiment.coordinates)}) in line {i}.') measurement = Measurement( experiment.coordinates[coordinate_id], last_callpath, last_metric, values) experiment.add_measurement(measurement) coordinate_id += 1 elif number_parameters >= 5: raise FileFormatError( "This input format supports a maximum of 4 parameters.") else: raise FileFormatError("This file has no parameters.") elif field_name == "PARAMETER": # create a new parameter parameters = field_value.split(' ') experiment.parameters += [Parameter(p) for p in parameters] number_parameters = len(experiment.parameters) elif field_name == "POINTS": coordinate_string = field_value.strip() if '(' in coordinate_string: coordinate_string = coordinate_string.replace(") (", ")(") coordinate_string = coordinate_string[1:-1] coordinate_strings = coordinate_string.split(')(') else: coordinate_strings = coordinate_string.split(' ') # create a new point if number_parameters == 1: coordinates = [ Coordinate(float(c)) for c in coordinate_strings ] experiment.coordinates.extend(coordinates) elif 1 < number_parameters < 5: for coordinate_string in coordinate_strings: coordinate_string = coordinate_string.strip() values = coordinate_string.split(" ") coordinate = Coordinate(float(v) for v in values) experiment.coordinates.append(coordinate) elif number_parameters >= 5: raise FileFormatError( "This input format supports a maximum of 4 parameters.") else: raise FileFormatError("This file has no parameters.") else: raise FileFormatError( f'Encountered wrong field: "{field_name}" in line {i}: {line}') if last_metric == Metric(''): experiment.metrics.append(last_metric) if last_metric == Callpath(''): experiment.callpaths.append(last_callpath) # create the call tree and add it to the experiment call_tree = create_call_tree(experiment.callpaths, progress_bar, progress_scale=10) experiment.call_tree = call_tree io_helper.validate_experiment(experiment, progress_bar) return experiment