예제 #1
0
sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=4)

# Associate the sampler with the campaign
campaign.set_sampler(sampler)

###############################
# execute the defined actions #
###############################

campaign.execute().collate()

###############################################
# run the UQ ensemble using FabSim3 interface #
###############################################

fab.run_uq_ensemble(CONFIG, campaign.campaign_dir, script='ade',
                    machine=MACHINE, PJ=PILOT_JOB)

# wait for job to complete
fab.wait(machine=MACHINE)

# check if all output files are retrieved from the remote machine, returns a Boolean flag
all_good = fab.verify(CONFIG, campaign.campaign_dir,
                      TARGET_FILENAME,
                      machine=MACHINE)

if all_good:
    # copy the results from the FabSim results dir to the EasyVVUQ results dir
    fab.get_uq_samples(CONFIG, campaign.campaign_dir, sampler.n_samples, machine=MACHINE)
else:
    print("Not all samples executed correctly")
    import sys
예제 #2
0
sampler = uq.sampling.MCSampler(vary=vary, n_mc_samples=2000)

# Associate the sampler with the campaign
campaign.set_sampler(sampler)

# Will draw all (of the finite set of samples)
campaign.draw_samples()
campaign.populate_runs_dir()

#Save the Campaign
campaign.save_state("campaign_state_PO.json")

# run the UQ ensemble
fab.run_uq_ensemble(config,
                    campaign.campaign_dir,
                    script=script,
                    machine=machine,
                    PJ=True)

#wait for job to complete
# fab.wait(machine=machine)

# #wait for jobs to complete and check if all output files are retrieved
# #from the remote machine
# fab.verify(config, campaign.campaign_dir,
#             campaign._active_app_decoder.target_filename,
#             machine=machine, PilotJob=True)

# #run the UQ ensemble
# fab.get_uq_samples(config, campaign.campaign_dir, sampler._n_samples,
#                    skip=0, machine='eagle_vecma')
def run_sc_samples(work_dir):
    
    # Set up a fresh campaign called "sc"
    my_campaign = uq.Campaign(name='ocean', work_dir=work_dir)

    # Define parameter space
    params = {
        "decay_time_nu": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 5.0},
        "decay_time_mu": {
            "type": "float",
            "min": 0.0,
            "max": 1000.0,
            "default": 90.0},
        "out_file": {
            "type": "string",
            "default": "output.csv"}}

    output_filename = params["out_file"]["default"]
    output_columns = ["E_mean", "Z_mean", "E_std", "Z_std"]

    # Create an encoder, decoder and collation element for PCE test app
    encoder = uq.encoders.GenericEncoder(
        template_fname= HOME + '/sc/ocean.template',
        delimiter='$',
        target_filename='ocean_in.json')
    decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                    output_columns=output_columns,
                                    header=0)
    collater = uq.collate.AggregateSamples(average=False)

    # Add the SC app (automatically set as current app)
    my_campaign.add_app(name="sc",
                        params=params,
                        encoder=encoder,
                        decoder=decoder,
                        collater=collater)    

    # Create the sampler
    vary = {
        "decay_time_nu": cp.Uniform(1.0, 5.0),
        "decay_time_mu": cp.Uniform(85.0, 95.0)
    }

    my_sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=2)
    # Associate the sampler with the campaign
    my_campaign.set_sampler(my_sampler)
    
    # Will draw all (of the finite set of samples)
    my_campaign.draw_samples()

    my_campaign.populate_runs_dir()
 
    #Run execution using Fabsim 
    fab.run_uq_ensemble(my_campaign.campaign_dir, 'ocean', machine='localhost')
    
    #Save the Campaign
    my_campaign.save_state("campaign_state.json")
    delimiter='$',
    target_filename='theta_initial_conditions.csv')
decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                output_columns=output_columns,
                                header=0)
collater = uq.collate.AggregateSamples(average=False)

# Add the SC app (automatically set as current app)
my_campaign.add_app(name="sc",
                    params=params,
                    encoder=encoder,
                    decoder=decoder,
                    collater=collater)

# Create the sampler
vary = {"incubation": cp.Normal(5.2, 0.1), "r0": cp.Normal(2.5, 0.1)}

my_sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=2)
# Associate the sampler with the campaign
my_campaign.set_sampler(my_sampler)

# Will draw all (of the finite set of samples)
my_campaign.draw_samples()

my_campaign.populate_runs_dir()

#Run execution using Fabsim
fab.run_uq_ensemble(my_campaign.campaign_dir, 'corona', machine='localhost')

#Save the Campaign
my_campaign.save_state("campaign_state.json")
예제 #5
0
my_sampler = uq.sampling.SCSampler(vary=vary, polynomial_order=2,
                                   quadrature_rule="G", 
                                   sparse=False, growth=False)

# Associate the sampler with the campaign
my_campaign.set_sampler(my_sampler)

# Will draw all (of the finite set of samples)
my_campaign.draw_samples()
my_campaign.populate_runs_dir()

##   Use this instead to run the samples using EasyVVUQ on the localhost
#my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(
#    "sc_model.py ade_in.json"))

fab.run_uq_ensemble(my_campaign.campaign_dir, script_name='ade', machine='localhost')

fab.get_uq_samples(my_campaign.campaign_dir, machine='localhost')

my_campaign.collate()

# Post-processing analysis
analysis = uq.analysis.SCAnalysis(sampler=my_sampler, qoi_cols=output_columns)

my_campaign.apply_analysis(analysis)

results = my_campaign.get_last_analysis()

###################################
# Plot the moments and SC samples #
###################################
예제 #6
0
    # Associate the sampler with the campaign
    campaign.set_sampler(sampler)

    ###############################
    # execute the defined actions #
    ###############################

    campaign.execute().collate()

    ####################################
    # Ensemble execution using FabSim3 #
    ####################################

    fab.run_uq_ensemble(CONFIG,
                        campaign.campaign_dir,
                        script='ohagan',
                        machine=MACHINE,
                        PJ=PILOT_JOB)

    # wait for job to complete
    fab.wait(machine=MACHINE)

    # check if all output files are retrieved from the remote machine, returns a Boolean flag
    all_good = fab.verify(CONFIG,
                          campaign.campaign_dir,
                          TARGET_FILENAME,
                          machine=MACHINE)

    if all_good:
        # copy the results from the FabSim results dir to the EasyVVUQ results dir
        fab.get_uq_samples(CONFIG,
예제 #7
0
def run_campaign(poly_order, work_dir='/tmp'):
    # Set up a fresh campaign called "sc"
    my_campaign = uq.Campaign(name='sc', work_dir=work_dir)

    # Define parameter space
    params = {
        "x1": {
            "type": "float",
            "min": 0.0,
            "max": 1.0,
            "default": 0.5
        },
        "x2": {
            "type": "float",
            "min": 0.0,
            "max": 1.0,
            "default": 0.5
        },
        "out_file": {
            "type": "string",
            "default": "output.csv"
        }
    }

    output_filename = params["out_file"]["default"]
    output_columns = ["f"]

    # Create an encoder, decoder and collation element
    encoder = uq.encoders.GenericEncoder(template_fname=HOME +
                                         '/sc/sobol.template',
                                         delimiter='$',
                                         target_filename='sobol_in.json')
    decoder = uq.decoders.SimpleCSV(target_filename=output_filename,
                                    output_columns=output_columns,
                                    header=0)
    collater = uq.collate.AggregateSamples(average=False)

    # Add the SC app (automatically set as current app)
    my_campaign.add_app(name="sc",
                        params=params,
                        encoder=encoder,
                        decoder=decoder,
                        collater=collater)

    # Create the sampler
    vary = {"x1": cp.Uniform(0.0, 1.0), "x2": cp.Uniform(0.0, 1.0)}
    """
    SPARSE GRID PARAMETERS
    ----------------------
    - sparse = True: use a Smolyak sparse grid
    - growth = True: use an exponential rule for the growth of the number
      of 1D collocation points per level. Used to make e.g. clenshaw-curtis
      quadrature nested.
    """

    my_sampler = uq.sampling.SCSampler(vary=vary,
                                       polynomial_order=poly_order,
                                       quadrature_rule="G",
                                       sparse=False,
                                       growth=False)

    # Associate the sampler with the campaign
    my_campaign.set_sampler(my_sampler)

    print('Number of samples:', my_sampler.xi_d.shape[0])

    # Will draw all (of the finite set of samples)
    my_campaign.draw_samples()
    my_campaign.populate_runs_dir()

    # Use this instead to run the samples using EasyVVUQ on the localhost
    # my_campaign.apply_for_each_run_dir(uq.actions.ExecuteLocal(
    #     "sc/sobol_model.py sobol_in.json"))

    #Run execution using Fabsim
    fab.run_uq_ensemble(my_campaign.campaign_dir,
                        'sobol_test',
                        machine='localhost')
    fab.get_uq_samples(my_campaign.campaign_dir, machine='localhost')

    my_campaign.collate()

    # Post-processing analysis
    analysis = uq.analysis.SCAnalysis(sampler=my_sampler,
                                      qoi_cols=output_columns)

    my_campaign.apply_analysis(analysis)

    results = my_campaign.get_last_analysis()

    #the unique ID of this Campaign
    ID = my_campaign.campaign_dir.split('/')[-1]

    #store the sobol indices of each campaign to the same results directory
    results_dir = work_dir + '/sobols/' + ID
    if os.path.exists(results_dir) == False:
        os.makedirs(results_dir)

    #store the 1st order sobols indices to a CSV file
    sobols = pd.DataFrame(results['sobols_first']['f'])
    sobols.to_csv(results_dir + '/sobols.csv')

    return results, ID