def test_compare_faces(self): img_a1 = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama.jpg')) img_a2 = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama2.jpg')) img_a3 = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama3.jpg')) img_b1 = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'biden.jpg')) face_encoding_a1 = api.face_encodings(img_a1)[0] face_encoding_a2 = api.face_encodings(img_a2)[0] face_encoding_a3 = api.face_encodings(img_a3)[0] face_encoding_b1 = api.face_encodings(img_b1)[0] faces_to_compare = [ face_encoding_a2, face_encoding_a3, face_encoding_b1 ] match_results = api.compare_faces(faces_to_compare, face_encoding_a1) self.assertEqual(type(match_results), list) self.assertTrue(match_results[0]) self.assertTrue(match_results[1]) self.assertFalse(match_results[2])
def test_partial_face_loc(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama_partial_face.jpg')) detected_faces = api.face_locations(img) self.assertEqual(len(detected_faces), 1) self.assertEqual(detected_faces[0], (142, 191, 365, 0)) img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama_partial_face2.jpg')) detected_faces = api.face_locations(img) self.assertEqual(len(detected_faces), 1) self.assertEqual(detected_faces[0], (142, 551, 409, 349))
def test_face_loc(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama.jpg')) detected_faces = api.face_locations(img) self.assertEqual(len(detected_faces), 1) self.assertEqual(detected_faces[0], (142, 617, 409, 349))
def test_cnn_raw_face_loc_32bit_img(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', '32bit.png')) detected_faces = api._raw_face_locations(img, model="cnn") self.assertEqual(len(detected_faces), 1) self.assertAlmostEqual(detected_faces[0].rect.top(), 259, delta=25) self.assertAlmostEqual(detected_faces[0].rect.bottom(), 552, delta=25)
def test_raw_face_loc_32bit_img(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', '32bit.png')) detected_faces = api._raw_face_locations(img) self.assertEqual(len(detected_faces), 1) self.assertEqual(detected_faces[0].top(), 290) self.assertEqual(detected_faces[0].bottom(), 558)
def test_raw_face_loc(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama.jpg')) detected_faces = api._raw_face_locations(img) self.assertEqual(len(detected_faces), 1) self.assertEqual(detected_faces[0].top(), 142) self.assertEqual(detected_faces[0].bottom(), 409)
def test_raw_face_landmarks(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama.jpg')) face_landmarks = api._raw_face_landmarks(img) example_landmark = face_landmarks[0].parts()[10] self.assertEqual(len(face_landmarks), 1) self.assertEqual(face_landmarks[0].num_parts, 68) self.assertEqual((example_landmark.x, example_landmark.y), (552, 399))
def test_cnn_face_loc(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama.jpg')) detected_faces = api.face_locations(img, model="cnn") self.assertEqual(len(detected_faces), 1) self.assertAlmostEqual(detected_faces[0][0], 144, delta=25) self.assertAlmostEqual(detected_faces[0][1], 608, delta=25) self.assertAlmostEqual(detected_faces[0][2], 389, delta=25) self.assertAlmostEqual(detected_faces[0][3], 363, delta=25)
def test_batched_face_loc(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama.jpg')) images = [img, img, img] batched_detected_faces = api.batch_face_locations( img, number_of_times_to_upsample=0) for detected_faces in batched_detected_faces: self.assertEqual(len(detected_faces), 1) self.assertEqual(detected_faces[0], (154, 611, 390, 375))
def test_raw_face_loc_batched(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama.jpg')) images = [img, img, img] batched_detected_faces = api._raw_face_locations_batched( img, number_of_times_to_upsample=0) for detected_faces in batched_detected_faces: self.assertEqual(len(detected_faces), 1) self.assertEqual(detected_faces[0].rect.top(), 154) self.assertEqual(detected_faces[0].rect.bottom(), 390)
def test_compare_faces_empty_lists(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'biden.jpg')) face_encoding = api.face_encodings(img)[0] # empty python list faces_to_compare = [] match_results = api.compare_faces(faces_to_compare, face_encoding) self.assertEqual(type(match_results), list) self.assertListEqual(match_results, []) # empty numpy list faces_to_compare = np.array([]) match_results = api.compare_faces(faces_to_compare, face_encoding) self.assertEqual(type(match_results), list) self.assertListEqual(match_results, [])
def test_load_img_file_32bit(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', '32bit.png')) self.assertEqual(img.shape, (1200, 626, 3))
def test_load_img_file(self): img = api.load_img_file( os.path.join(os.path.dirname(__file__), 'test_img', 'obama.jpg')) self.assertEqual(img.shape, (1137, 910, 3))