def preprocess(self, images): processed_images = [] for img in images: if img.shape[0] != self.image_size or img.shape[ 1] != self.image_size: print('Warning: custom resizing is used.') img = misc.imresize(img, (self.image_size, self.image_size), interp='bicubic') if img.ndim == 2: img = facenet2.to_rgb(img) img = facenet2.prewhiten(img) processed_images.append(img) return processed_images
def detect(self, img): with self.session.as_default(): if img.ndim < 2: return [], [] if img.ndim == 2: img = facenet2.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, points = align.detect_face.detect_face( img, self.minsize, self.pnet, self.rnet, self.onet, self.threshold, self.factor) nrof_faces = bounding_boxes.shape[0] detected_faces = [] detected_bb = [] if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - self.margin / 2, 0) bb[1] = np.maximum(det[1] - self.margin / 2, 0) bb[2] = np.minimum(det[2] + self.margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + self.margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize(cropped, (self.image_size, self.image_size), interp='bilinear') detected_faces.append(scaled) detected_bb.append(bb) return detected_faces, detected_bb
def detect(self, img): with self.session.as_default(): if img.ndim < 2: return [], [] if img.ndim == 2: img = facenet2.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, f_points = align.detect_face.detect_face( img, self.minsize, self.pnet, self.rnet, self.onet, self.threshold, self.factor) #print('bounding_boxes', bounding_boxes) nrof_faces = bounding_boxes.shape[0] detected_faces = [] detected_bb = [] face_score = [] if nrof_faces > 0: det = bounding_boxes[:, 0:4] face_score = bounding_boxes[:, 4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if self.detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = (det[:, 2] - det[:, 0]) * ( det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det_arr.append(det[index, :]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) margin0 = (det[2] - det[0]) * self.margin_rate margin1 = (det[3] - det[1]) * self.margin_rate bb[0] = np.maximum(det[0] - margin0, 0) bb[1] = np.maximum(det[1] - margin1, 0) bb[2] = np.minimum(det[2] + margin0, img_size[1]) bb[3] = np.minimum(det[3] + margin1, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize(cropped, (self.image_size, self.image_size), interp='bicubic') detected_faces.append(scaled) detected_bb.append(bb) for j in range(10): if j < 5: f_points[j, i] = (f_points[j, i] - bb[0]) / (bb[2] - bb[0]) else: f_points[j, i] = (f_points[j, i] - bb[1]) / (bb[3] - bb[1]) return detected_faces, detected_bb, f_points, face_score
def main(args): print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face2.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor try: img = cv2.imread(args.input_image) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(args.input_image, e) print(errorMessage) return if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) return if img.ndim == 2: img = facenet2.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = align.detect_face2.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] detected_faces = [] detected_bb = [] if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - args.margin / 2, 0) bb[1] = np.maximum(det[1] - args.margin / 2, 0) bb[2] = np.minimum(det[2] + args.margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + args.margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] #scaled = scipy.misc.imresize(cropped, (args.image_size, args.image_size), interp='bilinear') scaled = cv2.resize(cropped, (args.image_size, args.image_size)) detected_faces.append(scaled) detected_bb.append(bb) print(nrof_faces, 'faces are detected') print(detected_bb) source_image = img print('Loading feature extraction model') facenet2.load_model(args.model) # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name( "input:0") embeddings = tf.get_default_graph().get_tensor_by_name( "embeddings:0") phase_train_placeholder = tf.get_default_graph( ).get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] # Run forward pass to calculate embeddings print('Calculating features for images') # preprocessing images = [] for img in detected_faces: if img.ndim == 2: img = facenet2.to_rgb(img) img = facenet2.prewhiten(img) images.append(img) feed_dict = { images_placeholder: images, phase_train_placeholder: False } emb_array = sess.run(embeddings, feed_dict=feed_dict) print('Testing classifier') classifier_filename_exp = os.path.expanduser( args.classifier_filename) with open(classifier_filename_exp, 'rb') as infile: (model, class_names) = pickle.load(infile) print('Loaded classifier model from file "%s"' % classifier_filename_exp) predictions = model.predict_proba(emb_array) best_class_indices = np.argmax(predictions, axis=1) best_class_probabilities = predictions[ np.arange(len(best_class_indices)), best_class_indices] for i in range(len(best_class_indices)): print('%4d %s: %.3f' % (i, class_names[best_class_indices[i]], best_class_probabilities[i])) source_image = np.array(source_image) source_image = cv2.cvtColor(source_image, cv2.COLOR_BGR2RGB) for i in range(len(detected_bb)): bb = detected_bb[i] cv2.rectangle(source_image, (bb[0], bb[1]), (bb[2], bb[3]), (0, 255, 0), 3) cv2.putText(source_image, class_names[best_class_indices[i]], (bb[0], bb[1] - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.putText(source_image, '%.3f' % best_class_probabilities[i], (bb[0], bb[3] + 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imwrite('result.png', source_image)