def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError("Dataset not found: {} ({})".format( split, split_path)) dataset = StripTokenDataset(dataset, self.dictionary.eos()) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 2, # one less for <s> and one for </s> pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, document_sep_len=0, ) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) dataset = AppendTokenDataset(dataset, self.source_dictionary.eos()) mask_whole_words = (get_whole_word_mask(self.args, self.source_dictionary) if self.args.mask_length != "subword" else None) self.datasets[split] = DenoisingDataset( dataset, dataset.sizes, self.dictionary, self.mask_idx, mask_whole_words, shuffle=self.args.shuffle_instance, seed=self.seed, args=self.args, ) logger.info( "Split: {0}, Loaded {1} samples of denoising_dataset".format( split, len(self.datasets[split]), ))
def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ dataset = self._load_dataset_split(split, epoch, combine) mask_whole_words = ( get_whole_word_mask(self.cfg.bpe, self.source_dictionary) if self.cfg.mask_length != "subword" else None ) self.datasets[split] = DenoisingDataset( dataset, dataset.sizes, self.dictionary, self.mask_idx, mask_whole_words, shuffle=self.cfg.shuffle_instance, seed=self.cfg.seed, mask=self.cfg.mask, mask_random=self.cfg.mask_random, insert=self.cfg.insert, rotate=self.cfg.rotate, permute_sentences=self.cfg.permute_sentences, bpe=self.cfg.bpe, replace_length=self.cfg.replace_length, mask_length=self.cfg.mask_length, poisson_lambda=self.cfg.poisson_lambda, ) logger.info( "Split: {0}, Loaded {1} samples of denoising_dataset".format( split, len(self.datasets[split]), ) )
def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.args.data.split(":") assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) if self.langs is None: languages = sorted( [ name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name)) ] ) else: languages = self.langs.split(",") for name in languages: p = os.path.join(data_path, name) assert os.path.exists(p), "data not found: {}".format(p) logger.info("Training on {0} languages: {1}".format(len(languages), languages)) logger.info( "Language to id mapping: ", {lang: id for id, lang in enumerate(languages)} ) mask_whole_words = get_whole_word_mask(self.args, self.dictionary) language_without_segmentations = self.args.no_whole_word_mask_langs.split(",") lang_datasets = [] for language in languages: split_path = os.path.join(data_path, language, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) end_token = ( self.source_dictionary.index("[{}]".format(language)) if self.args.add_lang_token else self.source_dictionary.eos() ) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 2, # one less for <s> pad=self.source_dictionary.pad(), eos=end_token, break_mode=self.args.sample_break_mode, ) logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) dataset = AppendTokenDataset(dataset, end_token) lang_mask_whole_words = ( mask_whole_words if language not in language_without_segmentations else None ) lang_dataset = DenoisingDataset( dataset, dataset.sizes, self.dictionary, self.mask_idx, lang_mask_whole_words, shuffle=self.args.shuffle_instance, seed=self.seed, args=self.args, eos=None if not self.args.add_lang_token else self.source_dictionary.index("[{}]".format(language)), ) lang_datasets.append(lang_dataset) dataset_lengths = np.array( [len(d) for d in lang_datasets], dtype=float, ) logger.info( "loaded total {} blocks for all languages".format( int(dataset_lengths.sum()), ) ) if split == self.args.train_subset: # For train subset, additionally up or down sample languages. sample_probs = self._get_sample_prob(dataset_lengths) logger.info( "Sample probability by language: {}".format( { lang: "{0:.4f}".format(sample_probs[id]) for id, lang in enumerate(languages) } ) ) size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths logger.info( "Up/Down Sampling ratio by language: {}".format( { lang: "{0:.2f}".format(size_ratio[id]) for id, lang in enumerate(languages) } ) ) resampled_lang_datasets = [ ResamplingDataset( lang_datasets[i], size_ratio=size_ratio[i], seed=self.args.seed, epoch=epoch, replace=size_ratio[i] >= 1.0, ) for i, d in enumerate(lang_datasets) ] dataset = ConcatDataset( resampled_lang_datasets, ) else: dataset = ConcatDataset(lang_datasets) lang_splits = [split] for lang_id, lang_dataset in enumerate(lang_datasets): split_name = split + "_" + languages[lang_id] lang_splits.append(split_name) self.datasets[split_name] = lang_dataset if split in self.args.valid_subset: self.args.valid_subset = self.args.valid_subset.replace( split, ",".join(lang_splits) ) with data_utils.numpy_seed(self.args.seed + epoch): shuffle = np.random.permutation(len(dataset)) self.datasets[split] = SortDataset( dataset, sort_order=[ shuffle, dataset.sizes, ], )
document_sep_len=0, ) assert len(dataset) == prev_size # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, source_dictionary.bos()) dataset = AppendTokenDataset(dataset, source_dictionary.eos()) mask_whole_words = (get_whole_word_mask(args, source_dictionary) if mask_length != 'subword' else None) bpe = encoders.build_bpe(args) eoh = dictionary.indices[bpe.encode('</h>')] denoising_dataset = DenoisingDataset(dataset, dataset.sizes, dictionary, mask_idx, mask_whole_words, shuffle=False, seed=seed, args=args, eoh=eoh) for i in range(len(denoising_dataset)): ex_stripped = denoising_dataset.remove_extra_eos( denoising_dataset.dataset[i]) n = len(ex_stripped) if n > 512: print(n, i)