예제 #1
0
    def test_append_prev_key_padding_mask(self):
        bsz = 1
        src_len = 4

        cases = [
            # no padding mask
            (None, None, None),
            # current padding mask only
            (
                torch.tensor([[1]]).bool(),
                None,
                torch.tensor([[0, 0, 0, 1]]).bool(),
            ),
            # previous padding mask only
            (
                None,
                torch.tensor([[0, 1, 0]]).bool(),
                torch.tensor([[0, 1, 0, 0]]).bool(),
            ),
            # both padding masks
            (
                torch.tensor([[1]]).bool(),
                torch.tensor([[0, 1, 0]]).bool(),
                torch.tensor([[0, 1, 0, 1]]).bool(),
            ),
            # prev_key_padding_mask already full
            (
                torch.tensor([[0, 1, 0, 1]]).bool(),
                None,
                torch.tensor([[0, 1, 0, 1]]).bool(),
            ),
            # key_padding_mask already full
            (
                None,
                torch.tensor([[0, 1, 0, 1]]).bool(),
                torch.tensor([[0, 1, 0, 1]]).bool(),
            ),
        ]
        for c in cases:
            key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
                c[0],
                c[1],
                batch_size=bsz,
                src_len=src_len,
                static_kv=False,
            )

            if key_padding_mask is not None:
                self.assertTrue(
                    torch.all(torch.eq(key_padding_mask, c[2])),
                    f"Unexpected resultant key padding mask: {key_padding_mask}"
                    f" given current: {c[0]} and previous: {c[1]}",
                )
                self.assertEqual(key_padding_mask.size(0), bsz)
                self.assertEqual(key_padding_mask.size(1), src_len)
            else:
                self.assertIsNone(c[2])
    def forward(self,
                query,
                key: Optional[Tensor],
                value: Optional[Tensor],
                key_padding_mask: Optional[Tensor] = None,
                incremental_state: Optional[Dict[str, Dict[
                    str, Optional[Tensor]]]] = None,
                need_weights: bool = True,
                static_kv: bool = False,
                attn_mask: Optional[Tensor] = None,
                before_softmax: bool = False,
                need_head_weights: bool = False,
                mask=None,
                loss_type: str = 'nmt') -> Tuple[Tensor, Optional[Tensor]]:

        if need_head_weights:
            need_weights = True

        tgt_len, bsz, embed_dim = query.size()
        assert embed_dim == self.embed_dim
        assert list(query.size()) == [tgt_len, bsz, embed_dim]

        if (not self.onnx_trace
                and not self.tpu  # don't use PyTorch version on TPUs
                and incremental_state is None and not static_kv
                # A workaround for quantization to work. Otherwise JIT compilation
                # treats bias in linear module as method.
                and not torch.jit.is_scripting()):
            assert key is not None and value is not None
            return F.multi_head_attention_forward(
                query,
                key,
                value,
                self.embed_dim,
                self.num_heads,
                torch.empty([0]),
                torch.cat(
                    (self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
                self.bias_k,
                self.bias_v,
                self.add_zero_attn,
                self.dropout_module.p,
                self.out_proj.weight,
                self.out_proj.bias,
                self.training or self.dropout_module.apply_during_inference,
                key_padding_mask,
                need_weights,
                attn_mask,
                use_separate_proj_weight=True,
                q_proj_weight=self.q_proj.weight,
                k_proj_weight=self.k_proj.weight,
                v_proj_weight=self.v_proj.weight,
            )

        if incremental_state is not None:
            saved_state = self._get_input_buffer(incremental_state)
            if saved_state is not None and "prev_key" in saved_state:
                # previous time steps are cached - no need to recompute
                # key and value if they are static
                if static_kv:
                    assert self.encoder_decoder_attention and not self.self_attention
                    key = value = None
        else:
            saved_state = None

        if self.self_attention:
            q = self.q_proj(query)
            k = self.k_proj(query)
            v = self.v_proj(query)
        elif self.encoder_decoder_attention:
            # encoder-decoder attention
            q = self.q_proj(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                k = self.k_proj(key)
                v = self.v_proj(key)

        else:
            assert key is not None and value is not None
            q = self.q_proj(query)
            k = self.k_proj(key)
            v = self.v_proj(value)
        q *= self.scaling

        if self.bias_k is not None:
            assert self.bias_v is not None
            k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = torch.cat(
                    [attn_mask,
                     attn_mask.new_zeros(attn_mask.size(0), 1)],
                    dim=1)
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [
                        key_padding_mask,
                        key_padding_mask.new_zeros(key_padding_mask.size(0),
                                                   1),
                    ],
                    dim=1,
                )

        q = (q.contiguous().view(tgt_len, bsz * self.num_heads,
                                 self.head_dim).transpose(0, 1))
        if k is not None:
            k = (k.contiguous().view(-1, bsz * self.num_heads,
                                     self.head_dim).transpose(0, 1))
        if v is not None:
            v = (v.contiguous().view(-1, bsz * self.num_heads,
                                     self.head_dim).transpose(0, 1))

        if saved_state is not None:
            # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
            if "prev_key" in saved_state:
                _prev_key = saved_state["prev_key"]
                assert _prev_key is not None
                prev_key = _prev_key.view(bsz * self.num_heads, -1,
                                          self.head_dim)
                if static_kv:
                    k = prev_key
                else:
                    assert k is not None
                    k = torch.cat([prev_key, k], dim=1)
            if "prev_value" in saved_state:
                _prev_value = saved_state["prev_value"]
                assert _prev_value is not None
                prev_value = _prev_value.view(bsz * self.num_heads, -1,
                                              self.head_dim)
                if static_kv:
                    v = prev_value
                else:
                    assert v is not None
                    v = torch.cat([prev_value, v], dim=1)
            prev_key_padding_mask: Optional[Tensor] = None
            if "prev_key_padding_mask" in saved_state:
                prev_key_padding_mask = saved_state["prev_key_padding_mask"]
            assert k is not None and v is not None
            key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
                key_padding_mask=key_padding_mask,
                prev_key_padding_mask=prev_key_padding_mask,
                batch_size=bsz,
                src_len=k.size(1),
                static_kv=static_kv,
            )

            saved_state["prev_key"] = k.view(bsz, self.num_heads, -1,
                                             self.head_dim)
            saved_state["prev_value"] = v.view(bsz, self.num_heads, -1,
                                               self.head_dim)
            saved_state["prev_key_padding_mask"] = key_padding_mask
            # In this branch incremental_state is never None
            assert incremental_state is not None
            incremental_state = self._set_input_buffer(incremental_state,
                                                       saved_state)
        assert k is not None
        src_len = k.size(1)

        # This is part of a workaround to get around fork/join parallelism
        # not supporting Optional types.
        if key_padding_mask is not None and key_padding_mask.dim() == 0:
            key_padding_mask = None

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bsz
            assert key_padding_mask.size(1) == src_len

        if self.add_zero_attn:
            assert v is not None
            src_len += 1
            k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])],
                          dim=1)
            v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])],
                          dim=1)
            if attn_mask is not None:
                attn_mask = torch.cat(
                    [attn_mask,
                     attn_mask.new_zeros(attn_mask.size(0), 1)],
                    dim=1)
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [
                        key_padding_mask,
                        torch.zeros(key_padding_mask.size(0),
                                    1).type_as(key_padding_mask),
                    ],
                    dim=1,
                )

        attn_weights = torch.bmm(q, k.transpose(1, 2))
        attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len,
                                              bsz)

        assert list(
            attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            if self.onnx_trace:
                attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
            attn_weights += attn_mask

        if key_padding_mask is not None:
            # don't attend to padding symbols
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
                                             src_len)
            if not self.tpu:
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
                    float("-inf"))
            else:
                attn_weights = attn_weights.transpose(0, 2)
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask, float('-inf'))
                attn_weights = attn_weights.transpose(0, 2)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len,
                                             src_len)

        if before_softmax:
            return attn_weights, v

        attn_weights_float = utils.softmax(attn_weights,
                                           dim=-1,
                                           onnx_trace=self.onnx_trace)

        if loss_type == 'nmt':
            attn_weights_float = attn_weights_float + 0.1 * torch.mul(
                attn_weights_float, torch.exp(1 - mask))
        elif loss_type == 'mask':
            # attn_weights_float = torch.mul(attn_weights, mask)
            attn_weights_float = torch.add(
                torch.mul(attn_weights_float, mask),
                torch.mul(torch.mean(attn_weights_float, -1, True), 1 - mask))

        # tmp=attn_weights_float
        # if key_padding_mask is not None:
        #     attn_weights_float = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len)
        #     attn_weights_float = attn_weights_float.masked_fill(
        #             key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
        #             float("-inf")
        #         )
        #     attn_weights_float = attn_weights_float.view(bsz * self.num_heads, tgt_len, src_len)

        # attn_weights_float = utils.softmax(attn_weights_float, dim=-1, onnx_trace=self.onnx_trace)
        attn_weights = attn_weights_float.type_as(attn_weights)

        attn_probs = self.dropout_module(attn_weights)

        assert v is not None
        attn = torch.bmm(attn_probs, v)
        assert list(
            attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
        if self.onnx_trace and attn.size(1) == 1:
            # when ONNX tracing a single decoder step (sequence length == 1)
            # the transpose is a no-op copy before view, thus unnecessary
            attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
        else:
            attn = attn.transpose(0,
                                  1).contiguous().view(tgt_len, bsz, embed_dim)
        attn = self.out_proj(attn)
        attn_weights: Optional[Tensor] = None
        if need_weights:
            attn_weights = attn_weights_float.view(bsz, self.num_heads,
                                                   tgt_len,
                                                   src_len).transpose(1, 0)
            if not need_head_weights:
                # average attention weights over heads
                attn_weights = attn_weights.mean(dim=0)
                # attn_weights = attn_weights[0]

        return attn, attn_weights
예제 #3
0
    def forward(
        self,
        query,
        key: Optional[Tensor],
        value: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        need_weights: bool = True,
        static_kv: bool = False,
        attn_mask: Optional[Tensor] = None,
        before_softmax: bool = False,
        need_head_weights: bool = True,
        gold_dependency: Optional[Tensor] = None,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        """Input shape: Time x Batch x Channel

        Args:
            key_padding_mask (ByteTensor, optional): mask to exclude
                keys that are pads, of shape `(batch, src_len)`, where
                padding elements are indicated by 1s.
            need_weights (bool, optional): return the attention weights,
                averaged over heads (default: False).
            attn_mask (ByteTensor, optional): typically used to
                implement causal attention, where the mask prevents the
                attention from looking forward in time (default: None).
            before_softmax (bool, optional): return the raw attention
                weights and values before the attention softmax.
            need_head_weights (bool, optional): return the attention
                weights for each head. Implies *need_weights*. Default:
                return the average attention weights over all heads.
        """
        if need_head_weights:
            need_weights = True

        tgt_len, bsz, embed_dim = query.size()
        assert embed_dim == self.embed_dim
        assert list(query.size()) == [tgt_len, bsz, embed_dim]

        if incremental_state is not None:
            saved_state = self._get_input_buffer(incremental_state)
            if saved_state is not None and "prev_key" in saved_state:
                # previous time steps are cached - no need to recompute
                # key and value if they are static
                if static_kv:
                    assert self.encoder_decoder_attention and not self.self_attention
                    key = value = None
        else:
            saved_state = None

        if self.self_attention:
            q = self.q_proj(query)
            k = self.k_proj(query)
            v = self.v_proj(query)
        elif self.encoder_decoder_attention:
            # encoder-decoder attention
            q = self.q_proj(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                k = self.k_proj(key)
                v = self.v_proj(key)

        else:
            assert key is not None and value is not None
            q = self.q_proj(query)
            k = self.k_proj(key)
            v = self.v_proj(value)
        q *= self.scaling

        # Biaffine operation
        if gold_dependency is None:
            q[:, :, :self.dep_dim] = F.linear(q[:, :, :self.dep_dim], self.weight_biaffine)
            bias_biaffine = F.linear(k[:, :, :self.dep_dim], self.bias_biaffine)
            bias_biaffine = (
                bias_biaffine.contiguous()
                .view(-1, bsz)
                .transpose(0, 1)
                .unsqueeze(1).unsqueeze(2)
            )

        if self.bias_k is not None:
            assert self.bias_v is not None
            k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = torch.cat(
                    [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
                )
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [
                        key_padding_mask,
                        key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
                    ],
                    dim=1,
                )

        q = (
            q.contiguous()
            .view(tgt_len, bsz * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )
        if k is not None:
            k = (
                k.contiguous()
                .view(-1, bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )
        if v is not None:
            v = (
                v.contiguous()
                .view(-1, bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )

        if saved_state is not None:
            # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
            if "prev_key" in saved_state:
                _prev_key = saved_state["prev_key"]
                assert _prev_key is not None
                prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    k = prev_key
                else:
                    assert k is not None
                    k = torch.cat([prev_key, k], dim=1)
            if "prev_value" in saved_state:
                _prev_value = saved_state["prev_value"]
                assert _prev_value is not None
                prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    v = prev_value
                else:
                    assert v is not None
                    v = torch.cat([prev_value, v], dim=1)
            prev_key_padding_mask: Optional[Tensor] = None
            if "prev_key_padding_mask" in saved_state:
                prev_key_padding_mask = saved_state["prev_key_padding_mask"]
            assert k is not None and v is not None
            key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
                key_padding_mask=key_padding_mask,
                prev_key_padding_mask=prev_key_padding_mask,
                batch_size=bsz,
                src_len=k.size(1),
                static_kv=static_kv,
            )

            saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
            saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
            saved_state["prev_key_padding_mask"] = key_padding_mask
            # In this branch incremental_state is never None
            assert incremental_state is not None
            incremental_state = self._set_input_buffer(incremental_state, saved_state)
        assert k is not None
        src_len = k.size(1)

        # This is part of a workaround to get around fork/join parallelism
        # not supporting Optional types.
        if key_padding_mask is not None and key_padding_mask.dim() == 0:
            key_padding_mask = None

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bsz
            assert key_padding_mask.size(1) == src_len

        if self.add_zero_attn:
            assert v is not None
            src_len += 1
            k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
            v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
            if attn_mask is not None:
                attn_mask = torch.cat(
                    [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1
                )
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [
                        key_padding_mask,
                        torch.zeros(key_padding_mask.size(0), 1).type_as(
                            key_padding_mask
                        ),
                    ],
                    dim=1,
                )

        attn_weights = torch.bmm(q, k.transpose(1, 2))

        # DBSA's biaffine operation (bias term)
        if gold_dependency is None:
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights[:, :self.dep_heads, :, :] += bias_biaffine
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)

        assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            if self.onnx_trace:
                attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
            attn_weights += attn_mask

        if key_padding_mask is not None:
            # don't attend to padding symbols
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            if not self.tpu:
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
                    float("-inf")
                )
            else:
                attn_weights = attn_weights.transpose(0, 2)
                attn_weights = attn_weights.masked_fill(key_padding_mask, float('-inf'))
                attn_weights = attn_weights.transpose(0, 2)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if before_softmax:
            return attn_weights, v

        attn_weights_float = utils.softmax(
            attn_weights, dim=-1, onnx_trace=self.onnx_trace
        )

        # gold dependency
        if gold_dependency is not None:
            attn_weights_float = (
                attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len)
                .transpose(0, 1)
                .contiguous()
                .view(self.num_heads, bsz * tgt_len, src_len)
            )
            attn_weights_float[:self.dep_heads] = 0
            attn_weights_float[:self.dep_heads, gold_dependency[:, 0][:, None], gold_dependency[:, 1][:, None]] = 1

            attn_weights_float = (
                attn_weights_float.view(self.num_heads, bsz, tgt_len, src_len)
                .transpose(0, 1)
                .contiguous()
                .view(bsz * self.num_heads, tgt_len, src_len)
            )

        attn_weights = attn_weights_float.type_as(attn_weights)
        attn_probs = self.dropout_module(attn_weights)

        assert v is not None
        attn = torch.bmm(attn_probs, v)
        assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
        if self.onnx_trace and attn.size(1) == 1:
            # when ONNX tracing a single decoder step (sequence length == 1)
            # the transpose is a no-op copy before view, thus unnecessary
            attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
        else:
            attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
        attn = self.out_proj(attn)
        attn_weights: Optional[Tensor] = None
        if need_weights:
            attn_weights = attn_weights_float.view(
                bsz, self.num_heads, tgt_len, src_len
            ).transpose(1, 0)
            if not need_head_weights:
                # average attention weights over heads
                attn_weights = attn_weights.mean(dim=0)

        return attn, attn_weights
예제 #4
0
    def forward(
        self,
        query,
        key: Optional[Tensor],
        value: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str,
                                                   Optional[Tensor]]]] = None,
        need_weights: bool = True,
        static_kv: bool = False,
        attn_mask: Optional[Tensor] = None,
        before_softmax: bool = False,
        need_head_weights: bool = False,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        """Input shape: Time x Batch x Channel

        Args:
            key_padding_mask (ByteTensor, optional): mask to exclude
                keys that are pads, of shape `(batch, src_len)`, where
                padding elements are indicated by 1s.
            need_weights (bool, optional): return the attention weights,
                averaged over heads (default: False).
            attn_mask (ByteTensor, optional): typically used to
                implement causal attention, where the mask prevents the
                attention from looking forward in time (default: None).
            before_softmax (bool, optional): return the raw attention
                weights and values before the attention softmax.
            need_head_weights (bool, optional): return the attention
                weights for each head. Implies *need_weights*. Default:
                return the average attention weights over all heads.
        """
        if need_head_weights:
            need_weights = True

        tgt_len, bsz, embed_dim = query.size()
        assert embed_dim == self.embed_dim
        assert list(query.size()) == [tgt_len, bsz, embed_dim]

        if (not self.onnx_trace
                and not self.tpu  # don't use PyTorch version on TPUs
                and incremental_state is None and not static_kv
                # A workaround for quantization to work. Otherwise JIT compilation
                # treats bias in linear module as method.
                and not torch.jit.is_scripting()):
            assert key is not None and value is not None
            return F.multi_head_attention_forward(
                query,
                key,
                value,
                self.embed_dim,
                self.num_heads,
                torch.empty([0]),
                torch.cat(
                    (self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
                self.bias_k,
                self.bias_v,
                self.add_zero_attn,
                self.dropout_module.p,
                self.out_proj.weight,
                self.out_proj.bias,
                self.training or self.dropout_module.apply_during_inference,
                key_padding_mask,
                need_weights,
                attn_mask,
                use_separate_proj_weight=True,
                q_proj_weight=self.q_proj.weight,
                k_proj_weight=self.k_proj.weight,
                v_proj_weight=self.v_proj.weight,
            )

        if incremental_state is not None:
            saved_state = self._get_input_buffer(incremental_state)
            if saved_state is not None and "prev_key" in saved_state:
                # previous time steps are cached - no need to recompute
                # key and value if they are static
                if static_kv:
                    assert self.encoder_decoder_attention and not self.self_attention
                    key = value = None
        else:
            saved_state = None

        if self.self_attention:
            q: Tensor = self.q_proj(query)
            k: Tensor = self.k_proj(query)
            v: Tensor = self.v_proj(query)
        elif self.encoder_decoder_attention:
            q = self.q_proj(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                if self.beam_size > 1 and bsz == key.size(1):
                    # key is [T, bsz*beam_size, C], reduce to [T, bsz, C]
                    key = key.view(key.size(0), -1, self.beam_size,
                                   key.size(2))[:, :, 0, :]
                    if key_padding_mask is not None:
                        key_padding_mask = key_padding_mask.view(
                            -1, self.beam_size, key_padding_mask.size(1))[:,
                                                                          0, :]
                k = self.k_proj(key)
                v = self.v_proj(key)

        else:
            assert key is not None and value is not None
            q = self.q_proj(query)
            k = self.k_proj(key)
            v = self.v_proj(value)
        q *= self.scaling

        if self.bias_k is not None:
            assert self.bias_v is not None
            k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
            v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
            if attn_mask is not None:
                attn_mask = torch.cat(
                    [attn_mask,
                     attn_mask.new_zeros(attn_mask.size(0), 1)],
                    dim=1)
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [
                        key_padding_mask,
                        key_padding_mask.new_zeros(key_padding_mask.size(0),
                                                   1),
                    ],
                    dim=1,
                )

        q = (q.contiguous().view(tgt_len, bsz * self.num_heads,
                                 self.head_dim).transpose(0, 1))

        kv_bsz = 0
        if k is not None:
            kv_bsz = k.size(1)
            k = (k.contiguous().view(-1, kv_bsz * self.num_heads,
                                     self.head_dim).transpose(0, 1))
        if v is not None:
            assert kv_bsz
            v = (v.contiguous().view(-1, kv_bsz * self.num_heads,
                                     self.head_dim).transpose(0, 1))

        if saved_state is not None:
            # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
            if "prev_key" in saved_state:
                _prev_key = saved_state["prev_key"]
                assert _prev_key is not None
                kv_bsz = _prev_key.size(0)
                prev_key = _prev_key.view(kv_bsz * self.num_heads, -1,
                                          self.head_dim)
                if static_kv:
                    k = prev_key
                else:
                    assert k is not None
                    k = torch.cat([prev_key, k], dim=1)
            if "prev_value" in saved_state:
                _prev_value = saved_state["prev_value"]
                assert _prev_value is not None
                assert kv_bsz == _prev_value.size(0)
                prev_value = _prev_value.view(kv_bsz * self.num_heads, -1,
                                              self.head_dim)
                if static_kv:
                    v = prev_value
                else:
                    assert v is not None
                    v = torch.cat([prev_value, v], dim=1)
            prev_key_padding_mask: Optional[Tensor] = None
            if "prev_key_padding_mask" in saved_state:
                prev_key_padding_mask = saved_state["prev_key_padding_mask"]
            assert k is not None and v is not None
            key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
                key_padding_mask=key_padding_mask,
                prev_key_padding_mask=prev_key_padding_mask,
                batch_size=kv_bsz,
                src_len=k.size(1),
                static_kv=static_kv,
            )

            saved_state["prev_key"] = k.view(kv_bsz, self.num_heads, -1,
                                             self.head_dim)
            saved_state["prev_value"] = v.view(kv_bsz, self.num_heads, -1,
                                               self.head_dim)
            saved_state["prev_key_padding_mask"] = key_padding_mask
            # In this branch incremental_state is never None
            assert incremental_state is not None
            incremental_state = self._set_input_buffer(incremental_state,
                                                       saved_state)
        assert k is not None
        src_len = k.size(1)

        # This is part of a workaround to get around fork/join parallelism
        # not supporting Optional types.
        if key_padding_mask is not None and key_padding_mask.dim() == 0:
            key_padding_mask = None

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == kv_bsz
            assert key_padding_mask.size(1) == src_len

        if self.add_zero_attn:
            assert v is not None
            src_len += 1
            k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])],
                          dim=1)
            v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])],
                          dim=1)
            if attn_mask is not None:
                attn_mask = torch.cat(
                    [attn_mask,
                     attn_mask.new_zeros(attn_mask.size(0), 1)],
                    dim=1)
            if key_padding_mask is not None:
                key_padding_mask = torch.cat(
                    [
                        key_padding_mask,
                        torch.zeros(key_padding_mask.size(0),
                                    1).type_as(key_padding_mask),
                    ],
                    dim=1,
                )
        if self.encoder_decoder_attention and bsz != kv_bsz:
            q_shape = (kv_bsz, -1, self.num_heads) + q.size()[1:]
            k_shape = (kv_bsz, self.num_heads) + k.size()[1:]
            attn_weights = torch.einsum('bxhtd,bhsd->bxhts', q.view(q_shape),
                                        k.view(k_shape))
            aw_shape = (-1, ) + attn_weights.size()[-2:]
            attn_weights = attn_weights.reshape(aw_shape)
        else:
            attn_weights = torch.bmm(q, k.transpose(1, 2))
        attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len,
                                              bsz)

        assert list(
            attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            if self.onnx_trace:
                attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
            attn_weights += attn_mask

        if key_padding_mask is not None:
            # don't attend to padding symbols
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len,
                                             src_len)
            if not self.tpu:
                attn_weights = attn_weights.view(kv_bsz, -1, self.num_heads,
                                                 tgt_len, src_len)
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3).to(
                        torch.bool),
                    float("-inf"),
                )
            else:
                attn_weights = attn_weights.transpose(0, 2)
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask, float("-inf"))
                attn_weights = attn_weights.transpose(0, 2)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len,
                                             src_len)

        if before_softmax:
            return attn_weights, v

        attn_weights_float = utils.softmax(attn_weights,
                                           dim=-1,
                                           onnx_trace=self.onnx_trace)
        attn_weights = attn_weights_float.type_as(attn_weights)
        attn_probs = self.dropout_module(attn_weights)

        assert v is not None

        if self.encoder_decoder_attention and bsz != kv_bsz:
            ap_shape = (kv_bsz, -1, self.num_heads) + attn_probs.size()[1:]
            v_shape = (-1, self.num_heads) + v.size()[1:]
            attn = torch.einsum('bxhts,bhsd->bxhtd', attn_probs.view(ap_shape),
                                v.view(v_shape))
            a_shape = (-1, ) + attn.size()[-2:]
            attn = attn.reshape(a_shape)
        else:
            attn = torch.bmm(attn_probs, v)
        assert list(
            attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
        if self.onnx_trace and attn.size(1) == 1:
            # when ONNX tracing a single decoder step (sequence length == 1)
            # the transpose is a no-op copy before view, thus unnecessary
            attn = attn.contiguous().view(tgt_len, bsz, embed_dim)
        else:
            attn = attn.transpose(0,
                                  1).contiguous().view(tgt_len, bsz, embed_dim)
        attn = self.out_proj(attn)
        attn_weights: Optional[Tensor] = None
        if need_weights:
            attn_weights = attn_weights_float.view(bsz, self.num_heads,
                                                   tgt_len,
                                                   src_len).transpose(1, 0)
            if not need_head_weights:
                # average attention weights over heads
                attn_weights = attn_weights.mean(dim=0)

        return attn, attn_weights