예제 #1
0
def main():
    parser = options.get_parser('Generation')
    parser.add_argument('--path', metavar='FILE', required=True, action='append',
                        help='path(s) to model file(s)')
    options.add_dataset_args(parser)
    options.add_generation_args(parser)

    args = parser.parse_args()
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load ensemble
    print('| loading model(s) from {}'.format(', '.join(args.path)))
    models, model_args = utils.load_ensemble_for_inference(args.path, data_dir=args.data)
    src_dict, dst_dict = models[0].src_dict, models[0].dst_dict

    print('| [{}] dictionary: {} types'.format(model_args.source_lang, len(src_dict)))
    print('| [{}] dictionary: {} types'.format(model_args.target_lang, len(dst_dict)))

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam)

    # Initialize generator
    translator = SequenceGenerator(
        models, beam_size=args.beam, stop_early=(not args.no_early_stop),
        normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
        unk_penalty=args.unkpen)
    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    print('| Type the input sentence and press return:')
    for src_str in sys.stdin:
        src_str = src_str.strip()
        src_tokens = tokenizer.Tokenizer.tokenize(src_str, src_dict, add_if_not_exist=False).long()
        if use_cuda:
            src_tokens = src_tokens.cuda()
        translations = translator.generate(Variable(src_tokens.view(1, -1)))
        hypos = translations[0]
        print('O\t{}'.format(src_str))

        # Process top predictions
        for hypo in hypos[:min(len(hypos), args.nbest)]:
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu(),
                align_dict=align_dict,
                dst_dict=dst_dict,
                remove_bpe=args.remove_bpe)
            print('H\t{}\t{}'.format(hypo['score'], hypo_str))
            print('A\t{}'.format(' '.join(map(str, alignment))))
예제 #2
0
def main(args):
    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    num_sentences = 0
    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for batch in make_batches(inputs, args, task, max_positions,
                                  encode_fn):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            tgt_tokens = batch.tgt_tokens
            num_sentences += src_tokens[0].size(0)
            if use_cuda:
                if isinstance(src_tokens, list):
                    src_tokens = [tokens.cuda() for tokens in src_tokens]
                    src_lengths = [lengths.cuda() for lengths in src_lengths]
                else:
                    src_tokens = src_tokens.cuda()
                    src_lengths = src_lengths.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
                'target': tgt_tokens,
            }

            gen_timer.start()
            translations = task.inference_step(generator, models, sample)
            num_generated_tokens = sum(
                len(h[0]['tokens']) for h in translations)
            gen_timer.stop(num_generated_tokens)

            for i, (id,
                    hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                tgt_tokens_i = None
                if tgt_tokens is not None:
                    tgt_tokens_i = utils.strip_pad(tgt_tokens[i, :],
                                                   tgt_dict.pad()).int().cpu()
                results.append(
                    (start_id + id, src_tokens_i, hypos, tgt_tokens_i))

        # sort output to match input order
        for id, src_tokens, hypos, tgt_tokens in sorted(results,
                                                        key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id, src_str))

            if tgt_tokens is not None:
                tgt_str = tgt_dict.string(tgt_tokens,
                                          args.remove_bpe,
                                          escape_unk=True)
                print('T-{}\t{}'.format(id, tgt_str))

            # Process top predictions
            for j, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )
                hypo_str = decode_fn(hypo_str)
                score = hypo['score'] / math.log(2)  # convert to base 2
                print('H-{}\t{}\t{}'.format(id, score, hypo_str))
                print('P-{}\t{}'.format(
                    id,
                    ' '.join(
                        map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)
                                                           ).tolist(),
                        ))))
                if args.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(id, alignment_str))
                if args.print_step:
                    print('I-{}\t{}'.format(id, hypo['steps']))
                    print('O-{}\t{}'.format(id, hypo['num_ops']))

                if getattr(args, 'retain_iter_history', False):
                    for step, h in enumerate(hypo['history']):
                        _, h_str, _ = utils.post_process_prediction(
                            hypo_tokens=h['tokens'].int().cpu(),
                            src_str=src_str,
                            alignment=None,
                            align_dict=None,
                            tgt_dict=tgt_dict,
                            remove_bpe=None,
                        )
                        print('E-{}_{}\t{}'.format(id, step, h_str))

                # Score only the top hypothesis
                if tgt_tokens is not None and j == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        tgt_tokens = tgt_dict.encode_line(
                            tgt_str, add_if_not_exist=True)
                    if hasattr(scorer, 'add_string'):
                        scorer.add_string(tgt_str, hypo_str)
                    else:
                        scorer.add(tgt_tokens, hypo_tokens)

        # update running id counter
        start_id += len(inputs)

    logger.info(
        'Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'
        .format(num_sentences, gen_timer.n, gen_timer.sum,
                num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if args.has_target:
        logger.info('Generate with beam={}: {}'.format(args.beam,
                                                       scorer.result_string()))
예제 #3
0
def main(args):
    assert args.path is not None, '--path required for generation!'
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)
    print('| {} {} {} examples'.format(args.data, args.gen_subset,
                                       len(task.dataset(args.gen_subset))))

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _ = utils.load_ensemble_for_inference(args.path.split(':'),
                                                  task,
                                                  model_arg_overrides=eval(
                                                      args.model_overrides))

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=8,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    if args.score_reference:
        translator = SequenceScorer(models, task.target_dictionary)
    else:
        translator = SequenceGenerator(
            models,
            task.target_dictionary,
            beam_size=args.beam,
            minlen=args.min_len,
            stop_early=(not args.no_early_stop),
            normalize_scores=(not args.unnormalized),
            len_penalty=args.lenpen,
            unk_penalty=args.unkpen,
            sampling=args.sampling,
            sampling_topk=args.sampling_topk,
            sampling_temperature=args.sampling_temperature,
            diverse_beam_groups=args.diverse_beam_groups,
            diverse_beam_strength=args.diverse_beam_strength,
        )

    if use_cuda:
        translator.cuda()

    # Initialize fluency scorer (and language model)
    fluency_scorer = FluencyScorer(args.lang_model_path, args.lang_model_data)

    # Generate and compute BLEU score
    scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    # Save all sources, targets and hypothesis to compute GLEU score
    sources = []
    targets = []
    hypoths = []

    num_sentences = 0
    has_target = True
    with progress_bar.build_progress_bar(args, itr) as t:
        if args.score_reference:
            translations = translator.score_batched_itr(t,
                                                        cuda=use_cuda,
                                                        timer=gen_timer)
        else:
            translations = translator.generate_batched_itr(
                t,
                maxlen_a=args.max_len_a,
                maxlen_b=args.max_len_b,
                cuda=use_cuda,
                timer=gen_timer,
                prefix_size=args.prefix_size,
            )

        wps_meter = TimeMeter()
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
            has_target = target_tokens is not None
            target_tokens = target_tokens.int().cpu() if has_target else None

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(
                    args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(
                    args.gen_subset).tgt.get_original_text(sample_id)
            else:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                if has_target:
                    target_str = tgt_dict.string(target_tokens,
                                                 args.remove_bpe,
                                                 escape_unk=True)

            sources.append(src_str)
            targets.append(target_str)

            if not args.quiet:
                print('S-{}\t{}'.format(sample_id, src_str))
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str))

            iteration = 0
            curr_src_str = src_str
            best_fluency_score = fluency_scorer.score_sentence(src_str).item()
            best_hypo_str = ''

            # Boost inference
            while True:
                hypo_tokens_list = []
                hypo_str_list = []
                hypo_fluency_score_list = []

                # Process top predictions
                for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo['tokens'].int().cpu(),
                        src_str=curr_src_str,
                        alignment=hypo['alignment'].int().cpu()
                        if hypo['alignment'] is not None else None,
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=args.remove_bpe,
                    )

                    hypo_tokens_list.append(hypo_tokens)
                    hypo_str_list.append(hypo_str)
                    hypo_fluency_score = fluency_scorer.score_sentence(
                        hypo_str).item()
                    hypo_fluency_score_list.append(hypo_fluency_score)

                    if not args.quiet:
                        # print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))
                        print('H-{}\t{}\t{}'.format(sample_id, hypo_str,
                                                    hypo['score']))
                        print('P-{}\t{}'.format(
                            sample_id, ' '.join(
                                map(
                                    lambda x: '{:.4f}'.format(x),
                                    hypo['positional_scores'].tolist(),
                                ))))
                        print('F-{}\t{}'.format(sample_id, hypo_fluency_score))

                        if args.print_alignment:
                            print('A-{}\t{}'.format(
                                sample_id, ' '.join(
                                    map(lambda x: str(utils.item(x)),
                                        alignment))))

                # Compare best scores
                max_fluency_score = max(hypo_fluency_score_list)
                max_idx = hypo_fluency_score_list.index(max_fluency_score)
                max_hypo_str = hypo_str_list[max_idx]
                if max_fluency_score <= best_fluency_score:
                    # Score only the top hypothesis
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tokenizer.Tokenizer.tokenize(
                            target_str, tgt_dict, add_if_not_exist=True)
                    max_tokens = hypo_tokens_list[max_idx]
                    scorer.add(target_tokens, max_tokens)
                    hypoths.append(max_hypo_str)
                    hypoths.append(max_hypo_str)
                    break
                else:
                    # Keep boosting
                    iteration = iteration + 1
                    curr_src_str = max_hypo_str
                    best_fluency_score = max_fluency_score
                    best_hypo_str = max_hypo_str

            wps_meter.update(src_tokens.size(0))
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += 1

    print(
        '| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'
        .format(num_sentences, gen_timer.n, gen_timer.sum,
                num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        print('| Generate {} with beam={}: {}'.format(args.gen_subset,
                                                      args.beam,
                                                      scorer.result_string()))

    # compute GLEU
    gleu_calculator = GLEU(args.n)
    gleu_calculator.load_text_sources(sources)
    gleu_calculator.load_text_references([targets])
    gleu_scores = gleu_calculator.run_iterations(num_iterations=args.iter,
                                                 hypothesis=hypoths,
                                                 per_sent=args.sent)
    gleu_score = [g for g in gleu_scores][0][0] * 100
    print('| Generate {} with beam={}: GLEU = {:2.2f}'.format(
        args.gen_subset, args.beam, gleu_score))
예제 #4
0
def setup(source_lang,target_lang):
    sys.argv = sys.argv[:1]
    sys.argv.append('--path')
    sys.argv.append('model/checkpoints_' + source_lang + '_' + target_lang +'.pt')
    sys.argv.append('model/')
    sys.argv.append('--beam')
    sys.argv.append('5')
    sys.argv.append('--source-lang')
    sys.argv.append(source_lang)
    sys.argv.append('--target-lang')
    sys.argv.append(target_lang)
    sys.argv.append('--tokenizer')
    sys.argv.append('space')
    sys.argv.append('--bpe')
    sys.argv.append('bert')
    sys.argv.append('--bpe-vocab-file')
    sys.argv.append('model/' + '/dict.' + source_lang + '.txt')
#     sys.argv.append('--no-repeat-ngram-size')
#     sys.argv.append('2')
    sys.argv
    
    parser = options.get_interactive_generation_parser()
    args = options.parse_args_and_arch(parser)
    
    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    #logger.info(args) #print many info

    use_cuda = torch.cuda.is_available() and not args.cpu
    
    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(models, args)
    
    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    
    return args, task, max_positions, use_cuda, generator, models, tgt_dict, src_dict, align_dict
예제 #5
0
def main(cfg: FairseqConfig):
    if isinstance(cfg, Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(cfg.common)

    if cfg.interactive.buffer_size < 1:
        cfg.interactive.buffer_size = 1
    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.batch_size = 1

    assert (not cfg.generation.sampling
            or cfg.generation.nbest == cfg.generation.beam
            ), "--sampling requires --nbest to be equal to --beam"
    assert (not cfg.dataset.batch_size
            or cfg.dataset.batch_size <= cfg.interactive.buffer_size
            ), "--batch-size cannot be larger than --buffer-size"

    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(cfg.task)

    # Load ensemble
    overrides = ast.literal_eval(cfg.common_eval.model_overrides)
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        if model is None:
            continue
        if cfg.common.fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Initialize generator
    generator = SequenceEncoder(models)

    # Handle tokenization and BPE
    tokenizer = task.build_tokenizer(cfg.tokenizer)
    bpe = task.build_bpe(cfg.bpe)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(cfg.generation.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if cfg.generation.constraints:
        logger.warning(
            "NOTE: Constrained decoding currently assumes a shared subword vocabulary."
        )

    if cfg.interactive.buffer_size > 1:
        logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size)
    logger.info("NOTE: hypothesis and token scores are output in base 2")
    logger.info("Type the input sentence and press return:")

    data = {}
    current_idx = 0
    for inputs in buffered_read(cfg.interactive.input,
                                cfg.interactive.buffer_size):
        results = []
        for batch in make_batches(inputs, cfg, task, max_positions, encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                "net_input": {
                    "src_tokens": src_tokens,
                    "src_lengths": src_lengths,
                },
            }
            encodings = task.inference_step(generator,
                                            models,
                                            sample,
                                            constraints=constraints)

            encodings[0]['encoder_out'][0] = encodings[0]['encoder_out'][
                0].squeeze(1)
            data[str(current_idx)] = {
                'src':
                src_tokens.cpu().data.numpy().tolist(),
                'encoding':
                encodings[0]['encoder_out'][0].cpu().data.numpy().tolist()
            }
            current_idx += 1

    print(current_idx, len(data))
    json.dump(data, sys.stderr)
    print('Done')
예제 #6
0
def _generate_score(models, args, task, dataset):
    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load ensemble
    if not args.quiet:
        print("| loading model(s) from {}".format(", ".join(
            args.path.split(":"))))

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=True,
        )

    translator = build_sequence_generator(args, task, models)
    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    if args.max_examples_to_evaluate > 0:
        pytorch_translate_data.subsample_pair_dataset(
            dataset, args.max_examples_to_evaluate)

    # Keep track of translations
    # Initialize with empty translations
    # and zero probs scores
    translated_sentences = [""] * len(dataset)
    translated_scores = [0.0] * len(dataset)
    hypos_list = []

    collect_output_hypos = getattr(args, "output_hypos_binary_path", False)
    if collect_output_hypos:
        output_hypos_token_arrays = [None] * len(dataset)

    # Generate and compute BLEU score
    dst_dict = task.target_dictionary
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(dst_dict.pad(), dst_dict.eos(), dst_dict.unk())

    itr = task.get_batch_iterator(
        dataset=dataset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=8,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    oracle_scorer = None
    if args.report_oracle_bleu:
        oracle_scorer = bleu.Scorer(dst_dict.pad(), dst_dict.eos(),
                                    dst_dict.unk())

    rescorer = None
    num_sentences = 0
    translation_samples = []
    translation_info_list = []
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        gen_timer = StopwatchMeter()
        translations = translator.generate_batched_itr(
            t,
            maxlen_a=args.max_len_a,
            maxlen_b=args.max_len_b,
            cuda=use_cuda,
            timer=gen_timer,
            prefix_size=1
            if pytorch_translate_data.is_multilingual_many_to_one(args) else 0,
        )

        for trans_info in _iter_translations(args, task, dataset, translations,
                                             align_dict, rescorer):
            if hasattr(scorer, "add_string"):
                scorer.add_string(trans_info.target_str, trans_info.hypo_str)
            else:
                scorer.add(trans_info.target_tokens, trans_info.hypo_tokens)
            if oracle_scorer is not None:
                oracle_scorer.add(trans_info.target_tokens,
                                  trans_info.best_hypo_tokens)

            if getattr(args, "translation_output_file", False):
                translated_sentences[
                    trans_info.sample_id] = trans_info.hypo_str
            if getattr(args, "hypotheses_export_path", False):
                hypos_list.append(trans_info.hypos)
            if collect_output_hypos:
                output_hypos_token_arrays[
                    trans_info.sample_id] = trans_info.best_hypo_tokens
            if args.translation_info_export_path is not None:
                # Strip expensive data from hypotheses before saving
                hypos = [{
                    k: v
                    for k, v in hypo.items() if k in ["tokens", "score"]
                } for hypo in trans_info.hypos]
                # Make sure everything is on cpu before exporting
                hypos = [{
                    "score": hypo["score"],
                    "tokens": hypo["tokens"].cpu()
                } for hypo in hypos]
                translation_info_list.append({
                    "src_tokens":
                    trans_info.src_tokens.cpu(),
                    "target_tokens":
                    trans_info.target_tokens,
                    "hypos":
                    hypos,
                })
            translation_samples.append(
                collections.OrderedDict({
                    "sample_id":
                    trans_info.sample_id.item(),
                    "src_str":
                    trans_info.src_str,
                    "target_str":
                    trans_info.target_str,
                    "hypo_str":
                    trans_info.hypo_str,
                }))
            wps_meter.update(trans_info.src_tokens.size(0))
            t.log({"wps": round(wps_meter.avg)})
            num_sentences += 1

    # If applicable, save collected hypothesis tokens to binary output file
    if collect_output_hypos:
        output_dataset = pytorch_translate_data.InMemoryNumpyDataset()
        output_dataset.load_from_sequences(output_hypos_token_arrays)
        output_dataset.save(args.output_hypos_binary_path)
    if args.output_source_binary_path:
        dataset.src.save(args.output_source_binary_path)
    if args.translation_info_export_path is not None:
        f = open(args.translation_info_export_path, "wb")
        pickle.dump(translation_info_list, f)
        f.close()

    # If applicable, save the translations and hypos to the output file
    # For eg. external evaluation
    if getattr(args, "translation_output_file", False):
        with open(args.translation_output_file, "w") as out_file:
            for hypo_str in translated_sentences:
                print(hypo_str, file=out_file)

    if getattr(args, "hypotheses_export_path", False):
        with open(args.hypotheses_export_path, "w") as out_file:
            for hypos in hypos_list:
                for hypo in hypos:
                    print(
                        task.tgt_dict.string(hypo["tokens"],
                                             bpe_symbol=args.remove_bpe),
                        file=out_file,
                    )

    if getattr(args, "translation_probs_file", False):
        with open(args.translation_probs_file, "w") as out_file:
            for hypo_score in translated_scores:
                print(np.exp(hypo_score), file=out_file)

    if oracle_scorer is not None:
        print(
            f"| Oracle BLEU (best hypo in beam): {oracle_scorer.result_string()}"
        )

    return scorer, num_sentences, gen_timer, translation_samples
예제 #7
0
def main(args):
    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, '--max-sentences/--batch-size cannot be larger than --buffer-size'

    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(':'),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    #     if args.buffer_size > 1:
    #         print('| Sentence buffer size:', args.buffer_size)
    #     print('| Type the input sentence and press return:')
    start_id = 0
    i = 0
    with open("sacrebleu_fr.txt", "w") as writer:
        for inputs in tqdm(buffered_read(args.input, args.buffer_size),
                           total=int(get_len(args.input) / args.buffer_size)):
            results = []
            for batch in make_batches(inputs, args, task, max_positions,
                                      encode_fn):
                src_tokens = batch.src_tokens
                src_lengths = batch.src_lengths
                if use_cuda:
                    src_tokens = src_tokens.cuda()
                    src_lengths = src_lengths.cuda()

                sample = {
                    'net_input': {
                        'src_tokens': src_tokens,
                        'src_lengths': src_lengths,
                    },
                }
                translations = task.inference_step(generator, models, sample)
                for i, (id, hypos) in enumerate(
                        zip(batch.ids.tolist(), translations)):
                    src_tokens_i = utils.strip_pad(src_tokens[i],
                                                   tgt_dict.pad())
                    results.append((start_id + id, src_tokens_i, hypos))

            # sort output to match input order

            for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens, args.remove_bpe)
    #                 print('S-{}\t{}'.format(id, src_str))

    # Process top predictions
                for hypo in hypos[:min(len(hypos), args.nbest)]:
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo['tokens'].int().cpu(),
                        src_str=src_str,
                        alignment=hypo['alignment'].int().cpu()
                        if hypo['alignment'] is not None else None,
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=args.remove_bpe,
                    )
                    hypo_str = decode_fn(hypo_str)
                    writer.write(hypo_str + "\n")
                    i += 1
                    if i % 1000 == 0:
                        torch.cuda.empty_cache()

        # update running id counter
        start_id += len(inputs)
def main(args):
    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(':'),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

    if args.buffer_size > 1:
        print('| Sentence buffer size:', args.buffer_size)
    print('| Type the input sentence and press return:')
    start_id = 0
    gen_timer = StopwatchMeter()
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []

        # input is sentence \t s1|||t1 \t s2|||t2 ...
        new_inputs = []
        constraints = []
        for inp in inputs:
            inp = inp.split('\t')
            new_inputs.append(inp[0])
            constraints.append([tup.split('|||')[1] for tup in inp[1:]])

        for batch in make_batches(new_inputs, args, task, max_positions, encode_fn, constraints):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            tgt_init_tokens = batch.tgt_init_tokens
            tgt_init_lengths = batch.tgt_init_lengths
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                tgt_init_tokens = tgt_init_tokens.cuda()
                tgt_init_lengths = tgt_init_lengths.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                    'tgt_init_tokens': tgt_init_tokens,
                    'tgt_init_lengths': tgt_init_lengths,
                },
            }
            gen_timer.start()
            translations = task.inference_step(generator, models, sample)
            num_generated_tokens = sum(len(h[0]['tokens']) for h in translations)
            gen_timer.stop(num_generated_tokens)
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                results.append((start_id + id, src_tokens_i, hypos))

        # sort output to match input order
        for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id, src_str))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )
                hypo_str = decode_fn(hypo_str)
                print('H-{}\t{}\t{}'.format(id, hypo['score'], hypo_str))
                print('P-{}\t{}'.format(
                    id,
                    ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist()))
                ))
                if args.print_alignment:
                    alignment_str = " ".join(["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(
                        id,
                        alignment_str
                    ))

        # update running id counter
        start_id += len(inputs)
    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        start_id, gen_timer.n, gen_timer.sum, start_id / gen_timer.sum, 1. / gen_timer.avg))
예제 #9
0
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('fairseq_cli.generate')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Optimize ensemble for generation
    for model_idx, model in enumerate(models):
        if model_idx == 0:
            logger.info('num. model params: {:.2f} M (num. trained: {:.2f} M)'.format(
                sum(p.numel() for p in model.parameters()) / 1e6,
                sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6,
            ))

        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for sample in t:
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if 'net_input' not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample['target'][:, :args.prefix_size]

            gen_timer.start()
            hypos = task.inference_step(generator, models, sample, prefix_tokens)
            num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample['id'].tolist()):
                has_target = sample['target'] is not None

                # Remove padding
                src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
                target_tokens = None
                if has_target:
                    target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu()

                # Either retrieve the original sentences or regenerate them from tokens.
                if align_dict is not None:
                    src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
                    target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
                else:
                    if src_dict is not None:
                        src_str = src_dict.string(src_tokens, args.remove_bpe)
                    else:
                        src_str = ""
                    if has_target:
                        target_str = tgt_dict.string(target_tokens, args.remove_bpe, escape_unk=True)

                if not args.quiet:
                    if src_dict is not None:
                        print('S-{}\t{}'.format(sample_id, src_str), file=output_file)
                    if has_target:
                        print('T-{}\t{}'.format(sample_id, target_str), file=output_file)

                # Process top predictions
                for j, hypo in enumerate(hypos[i][:args.nbest]):
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo['tokens'].int().cpu(),
                        src_str=src_str,
                        alignment=hypo['alignment'],
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=args.remove_bpe,
                    )

                    if not args.quiet:
                        score = hypo['score'] / math.log(2)  # convert to base 2
                        print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str), file=output_file)
                        print('P-{}\t{}'.format(
                            sample_id,
                            ' '.join(map(
                                lambda x: '{:.4f}'.format(x),
                                # convert from base e to base 2
                                hypo['positional_scores'].div_(math.log(2)).tolist(),
                            ))
                        ), file=output_file)

                        if args.print_alignment:
                            print('A-{}\t{}'.format(
                                sample_id,
                                ' '.join(['{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment])
                            ), file=output_file)

                        if args.print_step:
                            print('I-{}\t{}'.format(sample_id, hypo['steps']), file=output_file)

                        if getattr(args, 'retain_iter_history', False):
                            for step, h in enumerate(hypo['history']):
                                _, h_str, _ = utils.post_process_prediction(
                                    hypo_tokens=h['tokens'].int().cpu(),
                                    src_str=src_str,
                                    alignment=None,
                                    align_dict=None,
                                    tgt_dict=tgt_dict,
                                    remove_bpe=None,
                                )
                                print('E-{}_{}\t{}'.format(sample_id, step, h_str), file=output_file)

                    # Score only the top hypothesis
                    if has_target and j == 0:
                        if align_dict is not None or args.remove_bpe is not None:
                            # Convert back to tokens for evaluation with unk replacement and/or without BPE
                            target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True)
                        if hasattr(scorer, 'add_string'):
                            scorer.add_string(target_str, hypo_str)
                        else:
                            scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(num_generated_tokens)
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += sample['nsentences']

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        logger.info('Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))

    return scorer
예제 #10
0
def main(args):
    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.batch_size is None:
        args.batch_size = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.batch_size or args.batch_size <= args.buffer_size, \
        '--batch-size cannot be larger than --buffer-size'

    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        utils.set_torch_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
        strict=(args.checkpoint_shard_count == 1),
        num_shards=args.checkpoint_shard_count,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        if args.fp16:
            model.half()
        if use_cuda and not args.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(args)

    # Initialize generator
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

    if args.constraints:
        logger.warning("NOTE: Constrained decoding currently assumes a shared subword vocabulary.")

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for batch in make_batches(inputs, args, task, max_positions, encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translate_start_time = time.time()
            translations = task.inference_step(generator, models, sample, constraints=constraints)
            translate_time = time.time() - translate_start_time
            total_translate_time += translate_time
            list_constraints = [[] for _ in range(bsz)]
            if args.constraints:
                list_constraints = [unpack_constraints(c) for c in constraints]
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                constraints = list_constraints[i]
                results.append((start_id + id, src_tokens_i, hypos,
                                { "constraints": constraints,
                                  "time": translate_time / len(translations) }
                            ))

        # sort output to match input order
        for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id_, src_str))
                print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
                for constraint in info["constraints"]:
                    print("C-{}\t{}".format(id_, tgt_dict.string(constraint, args.remove_bpe)))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo['score'] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print('H-{}\t{}\t{}'.format(id_, score, hypo_str))
                # detokenized hypothesis
                print('D-{}\t{}\t{}'.format(id_, score, detok_hypo_str))
                print('P-{}\t{}'.format(
                    id_,
                    ' '.join(map(
                        lambda x: '{:.4f}'.format(x),
                        # convert from base e to base 2
                        hypo['positional_scores'].div_(math.log(2)).tolist(),
                    ))
                ))
                if args.print_alignment:
                    alignment_str = " ".join(["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(
                        id_,
                        alignment_str
                    ))

        # update running id_ counter
        start_id += len(inputs)

    logger.info("Total time: {:.3f} seconds; translation time: {:.3f}".format(time.time() - start_time, total_translate_time))
예제 #11
0
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('fairseq_cli.generate')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(args.path),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=args.log_format,
        log_interval=args.log_interval,
        default_log_format=('tqdm' if not args.no_progress_bar else 'none'),
    )

    # debug: ahmed
    def quantize(data, n, max_value=1):
        scale = ((2**(n) - 1) / 2) / torch.max(torch.abs(data))  # adaptive max
        #scale = ((2**(n)-1)/2)/max_value # static max (predetermined)
        return torch.round(scale * data) / scale

    # quantize model layer by layer to n-bit
    #print("#########################################")
    for name, param in model.named_parameters():
        if param.requires_grad and ('weight' in name):
            layer = 'model.' + name
    #fileName = 'model_wmt14.weights.layers'
    fileName = 'model_iwslt14.tokenized.de-en.weights.layers'
    with open(fileName) as f:
        layersList = f.readlines()
    layersNamesList = [layerName.rstrip('\n') for layerName in layersList]
    layer_max_dict = pickle.load(open("layer_max_dict.pkl", "rb"))
    n = 8  #PRANNOY (type=int)
    for layer in layersNamesList:
        print('----------')
        #print(model.encoder.layers[0].self_attn)

        print(layer)
        kernel = eval(layer)
        max_value = layer_max_dict[layer].item()
        kernel_q = quantize(kernel, n)  # adaptive (on the fly)
        #kernel_q = quantize(kernel, 8, max_value) # static
        exec(layer + '=' + 'torch.nn.Parameter(kernel_q)')
        print(len((eval(layer)).unique()))
    """ 
    # quantize model layer by layer to n-bit
    print("#########################################")
    #print(model.encoder.embed_tokens.weight.shape)
    fileName = 'model_print.keys.weights.layers'
    with open(fileName) as f:
        layersList = f.readlines()
    layersNamesList = [layerName.rstrip('\n') for layerName in layersList]
    for layer in layersNamesList:
        #print(vars(layer).shape) 
        #print(model.encoder.embed_tokens.weight)
        #print(exec(layer))
        #print(globals()[layer]) 
        #print(eval(layer).shape) 

        print('------------')
        print(layer)
        kernel = eval(layer)
        kernel_q = quantize(kernel)
        #eval(layer) = torch.nn.Parameter(kernel_q)
        exec(layer + '=' + 'torch.nn.Parameter(kernel_q)')
        print(len((eval(layer)).unique()))
        #print(model)
        #kernel = model.decoder.layers[3].fc1.weight
        #print(kernel.shape)
        #print(torch.max(torch.abs(kernel)))
        #print(kernel[0][0:3])
        #print(len(set(model.decoder.layers[3].fc1.weight)))
        #kernel_q = quantize(kernel)
        #print(kernel_q[0][0:3])
        #model.decoder.layers[3].fc1.weight = torch.nn.Parameter(kernel_q)
        #print(len((model.decoder.layers[3].fc1.weight).unique()))
    print("#########################################")
    """

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if 'net_input' not in sample:
            continue

        prefix_tokens = None
        if args.prefix_size > 0:
            prefix_tokens = sample['target'][:, :args.prefix_size]

        gen_timer.start()
        hypos = task.inference_step(generator, models, sample, prefix_tokens)
        num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample['id'].tolist()):
            has_target = sample['target'] is not None

            # Remove padding
            src_tokens = utils.strip_pad(
                sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
            target_tokens = None
            if has_target:
                target_tokens = utils.strip_pad(sample['target'][i, :],
                                                tgt_dict.pad()).int().cpu()

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(
                    args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(
                    args.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens, args.remove_bpe)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(target_tokens,
                                                 args.remove_bpe,
                                                 escape_unk=True,
                                                 extra_symbols_to_ignore={
                                                     generator.eos,
                                                 })

            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not args.quiet:
                if src_dict is not None:
                    print('S-{}\t{}'.format(sample_id, src_str),
                          file=output_file)
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str),
                          file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:args.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore={
                        generator.eos,
                    })
                detok_hypo_str = decode_fn(hypo_str)
                if not args.quiet:
                    score = hypo['score'] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str),
                          file=output_file)
                    # detokenized hypothesis
                    print('D-{}\t{}\t{}'.format(sample_id, score,
                                                detok_hypo_str),
                          file=output_file)
                    print(
                        'P-{}\t{}'.format(
                            sample_id,
                            ' '.join(
                                map(
                                    lambda x: '{:.4f}'.format(x),
                                    # convert from base e to base 2
                                    hypo['positional_scores'].div_(math.log(2)
                                                                   ).tolist(),
                                ))),
                        file=output_file)

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id, ' '.join([
                                '{}-{}'.format(src_idx, tgt_idx)
                                for src_idx, tgt_idx in alignment
                            ])),
                              file=output_file)

                    if args.print_step:
                        print('I-{}\t{}'.format(sample_id, hypo['steps']),
                              file=output_file)

                    if getattr(args, 'retain_iter_history', False):
                        for step, h in enumerate(hypo['history']):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h['tokens'].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print('E-{}_{}\t{}'.format(sample_id, step, h_str),
                                  file=output_file)

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(
                            target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(
                            detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, 'add_string'):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({'wps': round(wps_meter.avg)})
        num_sentences += sample['nsentences']

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info(
        'Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'
        .format(num_sentences, gen_timer.n, gen_timer.sum,
                num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        if args.bpe and not args.sacrebleu:
            if args.remove_bpe:
                logger.warning(
                    "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
                )
            else:
                logger.warning(
                    "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization"
                )
        logger.info('Generate {} with beam={}: {}'.format(
            args.gen_subset, args.beam, scorer.result_string()))
        # ahmed: logging
        with open("infer_BLEU.txt", "a") as myfile:
            myfile.write(scorer.result_string())
            myfile.write("\n")

    return scorer
예제 #12
0
def main(args, text):
    import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = utils.load_ensemble_for_inference(
        args.path.split(':'),
        task,
        model_arg_overrides=eval(args.model_overrides),
    )
    args.copy_ext_dict = getattr(_model_args, "copy_attention", False)

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(args)

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)
    if align_dict is None and args.copy_ext_dict:
        align_dict = {}

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if args.buffer_size > 1:
        print('| Sentence buffer size:', args.buffer_size)
    #print('| Type the input sentence and press return:')
    start_id = 0
    src_strs = []
    results = []
    inputs = tokenize.sent_tokenize(text)
    for batch in make_batches(inputs, args, task, max_positions):
        src_tokens = batch.src_tokens
        src_lengths = batch.src_lengths
        src_strs.extend(batch.src_strs)
        if use_cuda:
            src_tokens = src_tokens.cuda()
            src_lengths = src_lengths.cuda()

        sample = {
            'net_input': {
                'src_tokens': src_tokens,
                'src_lengths': src_lengths,
            },
        }
        translations = task.inference_step(generator, models, sample)
        for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
            src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
            results.append((start_id + id, src_tokens_i, hypos))

    # sort output to match input order
    res = ''
    for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
        if src_dict is not None:
            src_str = src_dict.string(src_tokens, args.remove_bpe)
            print('S-{}\t{}'.format(id, src_str))

        hypo = hypos[0]
        _, hypo_str, _ = utils.post_process_prediction(
            hypo_tokens=hypo['tokens'].int().cpu(),
            src_str=src_strs[id],
            alignment=hypo['alignment'].int().cpu()
            if hypo['alignment'] is not None else None,
            align_dict=align_dict,
            tgt_dict=tgt_dict,
            remove_bpe=args.remove_bpe,
        )
        if id == 0:
            res = hypo_str
        else:
            res = res + ' ' + hypo_str

    return res
예제 #13
0
    def __init__(self, data_path="./data/processed", \
                 checkpoint_path="./checkpoints/zhen_mass_pre-training.pt",\
                 task='xmasked_seq2seq',\
                 user_dir='mass',\
                 s='zh', t='en',\
                 langs='en,zh',\
                 mt_steps='zh-en',\
                 source_langs='zh',\
                 target_langs='en',\
                 beam=5,\
                 use_cuda=1):
        self.parser = options.get_generation_parser(interactive=True)
        self.parser.set_defaults(path=checkpoint_path, task=task, user_dir=user_dir, s=s, t=t,\
                                 source_langs=source_langs, target_langs=target_langs,\
                                 langs=langs, mt_steps=mt_steps, beam=beam)
        self.use_cuda = use_cuda
        self.args = options.parse_args_and_arch(self.parser,\
                                               input_args=[data_path])
        self.args.user_dir = user_dir
        self.args.s = s
        self.args.t = t
        self.args.langs = langs
        self.args.mt_steps = mt_steps
        self.args.source_langs = source_langs
        self.args.target_langs = target_langs
        self.args.remove_bpe = '@@ '
        #self.args, _ = self.parser.parse_known_args([data_path])

        utils.import_user_module(self.args)

        if self.args.buffer_size < 1:
            self.args.buffer_size = 1
        if self.args.max_tokens is None and self.args.max_sentences is None:
            self.args.max_sentences = 1

        assert not self.args.sampling or self.args.nbest == self.args.beam, \
            '--sampling requires --nbest to be equal to --beam'
        assert not self.args.max_sentences or self.args.max_sentences <= self.args.buffer_size, \
            '--max-sentences/--batch-size cannot be larger than --buffer-size'

        print(self.args)

        #self.use_cuda = torch.cuda.is_available() and not self.args.cpu

        # Setup task, e.g., translation
        self.task = tasks.setup_task(self.args)

        # Load ensemble
        print('| loading model(s) from {}'.format(self.args.path))
        self.models, self._model_args = checkpoint_utils.load_model_ensemble(
            self.args.path.split(':'),
            arg_overrides=eval(self.args.model_overrides),
            task=self.task,
        )

        # Set dictionaries
        self.src_dict = self.task.source_dictionary
        self.tgt_dict = self.task.target_dictionary

        # Optimize ensemble for generation
        for model in self.models:
            model.make_generation_fast_(
                beamable_mm_beam_size=None
                if self.args.no_beamable_mm else self.args.beam,
                need_attn=self.args.print_alignment,
            )
            if self.args.fp16:
                model.half()
            if self.use_cuda:
                model.cuda()

        # Initialize generator
        self.generator = self.task.build_generator(self.args)

        # Hack to support GPT-2 BPE
        if self.args.remove_bpe == 'gpt2':
            from fairseq.gpt2_bpe.gpt2_encoding import get_encoder
            self.decoder = get_encoder(
                'fairseq/gpt2_bpe/encoder.json',
                'fairseq/gpt2_bpe/vocab.bpe',
            )
            self.encode_fn = lambda x: ' '.join(
                map(str, self.decoder.encode(x)))
        else:
            self.decoder = None
            self.encode_fn = lambda x: x

        # Load alignment dictionary for unknown word replacement
        # (None if no unknown word replacement, empty if no path to align dictionary)
        self.align_dict = utils.load_align_dict(self.args.replace_unk)

        self.max_positions = utils.resolve_max_positions(
            self.task.max_positions(),
            *[model.max_positions() for model in self.models])

        if self.args.buffer_size > 1:
            print('| Sentence buffer size:', self.args.buffer_size)
예제 #14
0
def main(args):
    assert args.path is not None, '--path required for generation!'
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    #print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)
    #print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset))))

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Load ensemble
    #print('| loading model(s) from {}'.format(args.path))
    models, _ = utils.load_ensemble_for_inference(args.path.split(':'),
                                                  task,
                                                  model_arg_overrides=eval(
                                                      args.model_overrides))

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=8,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    if args.score_reference:
        translator = SequenceScorer(models, task.target_dictionary)
    else:
        translator = SequenceGenerator(
            models,
            task.target_dictionary,
            beam_size=args.beam,
            minlen=args.min_len,
            stop_early=(not args.no_early_stop),
            normalize_scores=(not args.unnormalized),
            len_penalty=args.lenpen,
            unk_penalty=args.unkpen,
            sampling=args.sampling,
            sampling_topk=args.sampling_topk,
            sampling_temperature=args.sampling_temperature,
            diverse_beam_groups=args.diverse_beam_groups,
            diverse_beam_strength=args.diverse_beam_strength,
        )

    if use_cuda:
        translator.cuda()

    # Generate and compute BLEU score
    scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    with progress_bar.build_progress_bar(args, itr) as t:
        if args.score_reference:
            translations = translator.score_batched_itr(t,
                                                        cuda=use_cuda,
                                                        timer=gen_timer)
        else:
            translations = translator.generate_batched_itr(
                t,
                maxlen_a=args.max_len_a,
                maxlen_b=args.max_len_b,
                cuda=use_cuda,
                timer=gen_timer,
                prefix_size=args.prefix_size,
            )

        correct = 0
        total = 0
        wps_meter = TimeMeter()
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
            has_target = target_tokens is not None
            target_tokens = target_tokens.int().cpu() if has_target else None

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(
                    args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(
                    args.gen_subset).tgt.get_original_text(sample_id)
            else:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                if has_target:
                    target_str = tgt_dict.string(target_tokens,
                                                 args.remove_bpe,
                                                 escape_unk=True)

            total += 1
            if not args.quiet:
                print('S-{}\t{}'.format(sample_id, src_str))
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str))

            # Process top predictions
            for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu()
                    if hypo['alignment'] is not None else None,
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )

                if not args.quiet:
                    print('H-{}\t{}\t{}'.format(sample_id, hypo['score'],
                                                hypo_str))
                    print('P-{}\t{}'.format(
                        sample_id, ' '.join(
                            map(
                                lambda x: '{:.4f}'.format(x),
                                hypo['positional_scores'].tolist(),
                            ))))

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id, ' '.join(
                                map(lambda x: str(utils.item(x)), alignment))))

                # Score only the top hypothesis
                if has_target and i == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tokenizer.Tokenizer.tokenize(
                            target_str, tgt_dict, add_if_not_exist=True)
                    scorer.add(target_tokens, hypo_tokens)

                if hypo_str == target_str:
                    correct += 1
            wps_meter.update(src_tokens.size(0))
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += 1

    print(
        '| Translated {} correct sentences out of {}. Final accuracy: {:.2f}%'.
        format(correct, total, (correct / total) * 100))
    with open(args.output, 'w') as g:
        g.write(str((correct / total) * 100))
        g.write('\n')
        g.write(
            '| Translated {} correct sentences out of {}. Final accuracy: {:.2f}%'
            .format(correct, total, (correct / total) * 100))
def main():
    parser = options.get_parser('Generation')
    parser.add_argument('--path',
                        metavar='FILE',
                        required=True,
                        action='append',
                        help='path(s) to model file(s)')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--batch-size',
                              default=32,
                              type=int,
                              metavar='N',
                              help='batch size')
    dataset_args.add_argument(
        '--gen-subset',
        default='test',
        metavar='SPLIT',
        help='data subset to generate (train, valid, test)')
    options.add_generation_args(parser)

    args = parser.parse_args()
    if args.no_progress_bar and args.log_format is None:
        args.log_format = 'none'
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset
    if args.replace_unk is None:
        dataset = data.load_dataset(args.data, [args.gen_subset],
                                    args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(args.data, [args.gen_subset],
                                             args.source_lang,
                                             args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    # Load ensemble
    print('| loading model(s) from {}'.format(', '.join(args.path)))
    models, _ = utils.load_ensemble_for_inference(args.path, dataset.src_dict,
                                                  dataset.dst_dict)

    print('| [{}] dictionary: {} types'.format(dataset.src,
                                               len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst,
                                               len(dataset.dst_dict)))
    print('| {} {} {} examples'.format(args.data, args.gen_subset,
                                       len(dataset.splits[args.gen_subset])))

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam)

    # Initialize generator
    translator = SequenceGenerator(models,
                                   beam_size=args.beam,
                                   stop_early=(not args.no_early_stop),
                                   normalize_scores=(not args.unnormalized),
                                   len_penalty=args.lenpen,
                                   unk_penalty=args.unkpen)
    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Generate and compute BLEU score
    scorer = bleu.Scorer(dataset.dst_dict.pad(), dataset.dst_dict.eos(),
                         dataset.dst_dict.unk())
    max_positions = min(model.max_encoder_positions() for model in models)
    itr = dataset.eval_dataloader(args.gen_subset,
                                  max_sentences=args.batch_size,
                                  max_positions=max_positions,
                                  skip_invalid_size_inputs_valid_test=args.
                                  skip_invalid_size_inputs_valid_test)
    num_sentences = 0
    with utils.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        gen_timer = StopwatchMeter()
        translations = translator.generate_batched_itr(
            t,
            maxlen_a=args.max_len_a,
            maxlen_b=args.max_len_b,
            cuda_device=0 if use_cuda else None,
            timer=gen_timer)
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
            target_tokens = target_tokens.int().cpu()
            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = dataset.splits[
                    args.gen_subset].src.get_original_text(sample_id)
                target_str = dataset.splits[
                    args.gen_subset].dst.get_original_text(sample_id)
            else:
                src_str = dataset.src_dict.string(src_tokens, args.remove_bpe)
                target_str = dataset.dst_dict.string(target_tokens,
                                                     args.remove_bpe,
                                                     escape_unk=True)

            if not args.quiet:
                print('S-{}\t{}'.format(sample_id, src_str))
                print('T-{}\t{}'.format(sample_id, target_str))

            # Process top predictions
            for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu(),
                    align_dict=align_dict,
                    dst_dict=dataset.dst_dict,
                    remove_bpe=args.remove_bpe)

                if not args.quiet:
                    print('H-{}\t{}\t{}'.format(sample_id, hypo['score'],
                                                hypo_str))
                    print('A-{}\t{}'.format(sample_id,
                                            ' '.join(map(str, alignment))))

                # Score only the top hypothesis
                if i == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tokenizer.Tokenizer.tokenize(
                            target_str,
                            dataset.dst_dict,
                            add_if_not_exist=True)
                    scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(src_tokens.size(0))
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += 1

    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} tokens/s)'.
          format(num_sentences, gen_timer.n, gen_timer.sum,
                 1. / gen_timer.avg))
    print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam,
                                                  scorer.result_string()))
예제 #16
0
파일: generate.py 프로젝트: fyabc/fairseq
def main(args):
    assert args.path is not None, '--path required for generation!'
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)
    print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset))))

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _ = utils.load_ensemble_for_inference(args.path.split(':'), task, model_arg_overrides=eval(args.model_overrides))

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=8,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    if args.score_reference:
        translator = SequenceScorer(models, task.target_dictionary)
    else:
        translator = SequenceGenerator(
            models, task.target_dictionary, beam_size=args.beam, minlen=args.min_len,
            stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized),
            len_penalty=args.lenpen, unk_penalty=args.unkpen,
            sampling=args.sampling, sampling_topk=args.sampling_topk, sampling_temperature=args.sampling_temperature,
            diverse_beam_groups=args.diverse_beam_groups, diverse_beam_strength=args.diverse_beam_strength,
        )

    if use_cuda:
        translator.cuda()

    # Generate and compute BLEU score
    scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    with progress_bar.build_progress_bar(args, itr) as t:
        if args.score_reference:
            translations = translator.score_batched_itr(t, cuda=use_cuda, timer=gen_timer)
        else:
            translations = translator.generate_batched_itr(
                t, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b,
                cuda=use_cuda, timer=gen_timer, prefix_size=args.prefix_size,
            )

        wps_meter = TimeMeter()
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
            has_target = target_tokens is not None
            target_tokens = target_tokens.int().cpu() if has_target else None

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
            else:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                if has_target:
                    target_str = tgt_dict.string(target_tokens, args.remove_bpe, escape_unk=True)

            if not args.quiet:
                print('S-{}\t{}'.format(sample_id, src_str))
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str))

            # Process top predictions
            for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )

                if not args.quiet:
                    print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))
                    print('P-{}\t{}'.format(
                        sample_id,
                        ' '.join(map(
                            lambda x: '{:.4f}'.format(x),
                            hypo['positional_scores'].tolist(),
                        ))
                    ))

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id,
                            ' '.join(map(lambda x: str(utils.item(x)), alignment))
                        ))

                # Score only the top hypothesis
                if has_target and i == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tokenizer.Tokenizer.tokenize(
                            target_str, tgt_dict, add_if_not_exist=True)
                    scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(src_tokens.size(0))
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += 1

    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
예제 #17
0
def _main(args,
          output_file,
          rank=0,
          world_size=1,
          backend='NCCL',
          master_addr='127.0.0.1',
          master_port='29500'):
    if world_size > 1:
        import torch.distributed as dist
        os.environ['MASTER_ADDR'] = master_addr
        os.environ['MASTER_PORT'] = master_port
        dist.init_process_group(backend, rank=rank, world_size=world_size)

    with torch.cuda.device(rank):
        logging.basicConfig(
            format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
            datefmt='%Y-%m-%d %H:%M:%S',
            level=logging.INFO,
            stream=output_file,
        )
        logger = logging.getLogger('fairseq_cli.generate')

        utils.import_user_module(args)

        if args.max_tokens is None and args.max_sentences is None:
            args.max_tokens = 12000
        logger.info(args)

        use_cuda = torch.cuda.is_available() and not args.cpu

        # Load dataset splits
        task = tasks.setup_task(args)
        task.load_dataset(args.gen_subset)

        # Set dictionaries
        try:
            src_dict = getattr(task, 'source_dictionary', None)
        except NotImplementedError:
            src_dict = None
        tgt_dict = task.target_dictionary

        # Load ensemble
        logger.info('loading model(s) from {}'.format(args.path))
        models, _model_args = checkpoint_utils.load_model_ensemble(
            utils.split_paths(args.path),
            arg_overrides=eval(args.model_overrides),
            strict=False,  # TODO:
            task=task,
        )

        # Optimize ensemble for generation
        for model in models:
            model.make_generation_fast_(
                beamable_mm_beam_size=None
                if args.no_beamable_mm else args.beam,
                need_attn=args.print_alignment,
            )
            if args.fp16:
                model.half()
            if use_cuda:
                model.cuda()

        # Load alignment dictionary for unknown word replacement
        # (None if no unknown word replacement, empty if no path to align dictionary)
        align_dict = utils.load_align_dict(args.replace_unk)

        shuffle = False
        if args.max_size > 0:
            shuffle = True
            assert args.seed == 1234
        # Load dataset (possibly sharded)
        itr = task.get_batch_iterator(
            dataset=task.dataset(args.gen_subset),
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences,
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                *[model.max_positions() for model in models]),
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=args.required_batch_size_multiple,
            num_shards=args.num_shards,
            shard_id=args.shard_id,
            num_workers=args.num_workers,
            seed=args.seed,
        ).next_epoch_itr(shuffle=shuffle)
        progress = progress_bar.progress_bar(
            itr,
            log_format=args.log_format,
            log_interval=args.log_interval,
            default_log_format=('tqdm'
                                if not args.no_progress_bar else 'none'),
        )

        # Initialize generator
        gen_timer = StopwatchMeter()
        generator = task.build_generator(models, args)

        # Handle tokenization and BPE
        tokenizer = encoders.build_tokenizer(args)
        bpe = encoders.build_bpe(args)

        def decode_fn(x):
            if bpe is not None:
                x = bpe.decode(x)
            if tokenizer is not None:
                x = tokenizer.decode(x)
            return x

        # Generate and compute BLEU score
        if args.sacrebleu:
            scorer = bleu.SacrebleuScorer()
        else:
            scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(),
                                 tgt_dict.unk())
        num_sentences = 0
        has_target = True
        wps_meter = TimeMeter()
        num_processed = 0
        for sample in progress:
            num_processed += 1
            if args.max_size > 0 and num_processed > args.max_size:
                break
            #import pdb; pdb.set_trace()
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if 'net_input' not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample['target'][:, :args.prefix_size]

            gen_timer.start()
            hypos = task.inference_step(generator,
                                        models,
                                        sample,
                                        prefix_tokens,
                                        topk=args.topk,
                                        D=args.D,
                                        rounds=args.rounds,
                                        rank=rank,
                                        ngpus=world_size)

            if rank == 0:
                num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
                gen_timer.stop(num_generated_tokens)
                for i, sample_id in enumerate(sample['id'].tolist()):
                    has_target = sample['target'] is not None

                    # Remove padding
                    src_tokens = utils.strip_pad(
                        sample['net_input']['src_tokens'][i, :],
                        tgt_dict.pad())
                    target_tokens = None
                    if has_target:
                        target_tokens = utils.strip_pad(
                            sample['target'][i, :],
                            tgt_dict.pad()).int().cpu()

                    # Either retrieve the original sentences or regenerate them from tokens.
                    if align_dict is not None:
                        src_str = task.dataset(
                            args.gen_subset).src.get_original_text(sample_id)
                        target_str = task.dataset(
                            args.gen_subset).tgt.get_original_text(sample_id)
                    else:
                        if src_dict is not None:
                            src_str = src_dict.string(src_tokens,
                                                      args.remove_bpe)
                        else:
                            src_str = ""
                        if has_target:
                            target_str = tgt_dict.string(
                                target_tokens,
                                args.remove_bpe,
                                escape_unk=True,
                                extra_symbols_to_ignore={
                                    generator.eos,
                                })

                    src_str = decode_fn(src_str)
                    if has_target:
                        target_str = decode_fn(target_str)

                    if not args.quiet:
                        if src_dict is not None:
                            print('S-{}\t{}'.format(sample_id, src_str),
                                  file=output_file)
                        if has_target:
                            print('T-{}\t{}'.format(sample_id, target_str),
                                  file=output_file)

                    # Process top predictions
                    for j, hypo in enumerate(hypos[i][:args.nbest]):
                        hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                            hypo_tokens=hypo['tokens'].int().cpu(),
                            src_str=src_str,
                            alignment=hypo['alignment'],
                            align_dict=align_dict,
                            tgt_dict=tgt_dict,
                            remove_bpe=args.remove_bpe,
                            extra_symbols_to_ignore={
                                generator.eos,
                            })
                        detok_hypo_str = decode_fn(hypo_str)
                        if not args.quiet:
                            score = hypo['score'] / math.log(
                                2)  # convert to base 2
                            # original hypothesis (after tokenization and BPE)
                            print('H-{}\t{}\t{}'.format(
                                sample_id, score, hypo_str),
                                  file=output_file)
                            # detokenized hypothesis
                            print('D-{}\t{}\t{}'.format(
                                sample_id, score, detok_hypo_str),
                                  file=output_file)
                            print(
                                'P-{}\t{}'.format(
                                    sample_id,
                                    ' '.join(
                                        map(
                                            lambda x: '{:.4f}'.format(x),
                                            # convert from base e to base 2
                                            hypo['positional_scores'].div_(
                                                math.log(2)).tolist(),
                                        ))),
                                file=output_file)

                            if args.print_alignment:
                                print('A-{}\t{}'.format(
                                    sample_id, ' '.join([
                                        '{}-{}'.format(src_idx, tgt_idx)
                                        for src_idx, tgt_idx in alignment
                                    ])),
                                      file=output_file)

                            if args.print_step:
                                print('I-{}\t{}'.format(
                                    sample_id, hypo['steps']),
                                      file=output_file)

                            if getattr(args, 'retain_iter_history', False):
                                for step, h in enumerate(hypo['history']):
                                    _, h_str, _ = utils.post_process_prediction(
                                        hypo_tokens=h['tokens'].int().cpu(),
                                        src_str=src_str,
                                        alignment=None,
                                        align_dict=None,
                                        tgt_dict=tgt_dict,
                                        remove_bpe=None,
                                    )
                                    print('E-{}_{}\t{}'.format(
                                        sample_id, step, h_str),
                                          file=output_file)

                        # Score only the top hypothesis
                        if has_target and j == 0:
                            if align_dict is not None or args.remove_bpe is not None:
                                # Convert back to tokens for evaluation with unk replacement and/or without BPE
                                target_tokens = tgt_dict.encode_line(
                                    target_str, add_if_not_exist=True)
                            if hasattr(scorer, 'add_string'):
                                scorer.add_string(target_str, hypo_str)
                            else:
                                scorer.add(target_tokens, hypo_tokens)

                wps_meter.update(num_generated_tokens)
                progress.log({'wps': round(wps_meter.avg)})
                num_sentences += sample['nsentences']

        if rank == 0:
            import pickle
            if args.dump_vis_path != '':
                pickle.dump(generator.data, open(args.dump_vis_path, 'wb'))
                logger.info(f'Data dumped to {args.dump_vis_path}')
            logger.info(
                'NOTE: hypothesis and token scores are output in base 2')
            logger.info(
                'Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'
                .format(num_sentences, gen_timer.n, gen_timer.sum,
                        num_sentences / gen_timer.sum, 1. / gen_timer.avg))
            logger.info('Latency {:.8f}'.format(1000 * gen_timer.sum /
                                                num_sentences))
            if has_target:
                logger.info('Generate {} with beam={}: {}'.format(
                    args.gen_subset, args.beam, scorer.result_string()))

    return scorer
예제 #18
0
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('fairseq_cli.generate')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    # Fix seed for stochastic decoding
    if args.seed is not None and not args.no_seed_provided:
        np.random.seed(args.seed)
        torch.manual_seed(args.seed)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(args.path),
        arg_overrides=eval(args.model_overrides),
        task=task,
        suffix=getattr(args, "checkpoint_suffix", ""),
    )

    # Optimize ensemble for generation
    for model in models:
        model.prepare_for_inference_(args)
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=args.log_format,
        log_interval=args.log_interval,
        default_log_format=('tqdm' if not args.no_progress_bar else 'none'),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if 'net_input' not in sample:
            continue

        prefix_tokens = None
        if args.prefix_size > 0:
            prefix_tokens = sample['target'][:, :args.prefix_size]

        gen_timer.start()
        hypos = task.inference_step(generator, models, sample, prefix_tokens)
        num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample['id'].tolist()):
            has_target = sample['target'] is not None

            # Remove padding
            src_tokens = utils.strip_pad(
                sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
            target_tokens = None
            if has_target:
                target_tokens = utils.strip_pad(sample['target'][i, :],
                                                tgt_dict.pad()).int().cpu()

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(
                    args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(
                    args.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens, args.remove_bpe)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(target_tokens,
                                                 args.remove_bpe,
                                                 escape_unk=True,
                                                 extra_symbols_to_ignore={
                                                     generator.eos,
                                                 })

            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not args.quiet:
                if src_dict is not None:
                    print('S-{}\t{}'.format(sample_id, src_str),
                          file=output_file)
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str),
                          file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:args.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                    extra_symbols_to_ignore={
                        generator.eos,
                    })
                detok_hypo_str = decode_fn(hypo_str)
                if not args.quiet:
                    score = hypo['score'] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str),
                          file=output_file)
                    # detokenized hypothesis
                    print('D-{}\t{}\t{}'.format(sample_id, score,
                                                detok_hypo_str),
                          file=output_file)
                    print(
                        'P-{}\t{}'.format(
                            sample_id,
                            ' '.join(
                                map(
                                    lambda x: '{:.4f}'.format(x),
                                    # convert from base e to base 2
                                    hypo['positional_scores'].div_(math.log(2)
                                                                   ).tolist(),
                                ))),
                        file=output_file)

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id, ' '.join([
                                '{}-{}'.format(src_idx, tgt_idx)
                                for src_idx, tgt_idx in alignment
                            ])),
                              file=output_file)

                    if args.print_step:
                        print('I-{}\t{}'.format(sample_id, hypo['steps']),
                              file=output_file)

                    if getattr(args, 'retain_iter_history', False):
                        for step, h in enumerate(hypo['history']):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h['tokens'].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print('E-{}_{}\t{}'.format(sample_id, step, h_str),
                                  file=output_file)

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(
                            target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(
                            detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, 'add_string'):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({'wps': round(wps_meter.avg)})
        num_sentences += sample['nsentences']

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info(
        'Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'
        .format(num_sentences, gen_timer.n, gen_timer.sum,
                num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        if args.bpe and not args.sacrebleu:
            if args.remove_bpe:
                logger.warning(
                    "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
                )
            else:
                logger.warning(
                    "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization"
                )
        logger.info('Generate {} with beam={}: {}'.format(
            args.gen_subset, args.beam, scorer.result_string()))

    return scorer
예제 #19
0
def main(args):
    assert args.path is not None, '--path required for generation!'
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # when running on CPU, use fp32 as default
    if not use_cuda:
        args.fp16 = False

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(':'),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    torch.manual_seed(args.seed)

    # Optimize ensemble for generation
    for model in models:
        if use_cuda:
            model.cuda()

        config = utils.get_subtransformer_config(args)

        model.set_sample_config(config)
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()
        print(model, file=sys.stderr)
        print(args.path, file=sys.stderr)

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    num_sentences = 0
    has_target = True
    decoder_times_all = []
    input_len_all = []
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for sample in t:

            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if 'net_input' not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample['target'][:, :args.prefix_size]

            gen_timer.start()
            hypos, decoder_times = task.inference_step(generator, models,
                                                       sample, prefix_tokens)
            input_len_all.append(
                np.mean(sample['net_input']['src_lengths'].cpu().numpy()))

            print(decoder_times)
            decoder_times_all.append(decoder_times)
            num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample['id'].tolist()):
                has_target = sample['target'] is not None

                # Remove padding
                src_tokens = utils.strip_pad(
                    sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
                target_tokens = None
                if has_target:
                    target_tokens = utils.strip_pad(
                        sample['target'][i, :], tgt_dict.pad()).int().cpu()

                # Either retrieve the original sentences or regenerate them from tokens.
                if align_dict is not None:
                    src_str = task.dataset(
                        args.gen_subset).src.get_original_text(sample_id)
                    target_str = task.dataset(
                        args.gen_subset).tgt.get_original_text(sample_id)
                else:
                    if src_dict is not None:
                        src_str = src_dict.string(src_tokens, args.remove_bpe)
                    else:
                        src_str = ""
                    if has_target:
                        target_str = tgt_dict.string(target_tokens,
                                                     args.remove_bpe,
                                                     escape_unk=True)

                if not args.quiet:
                    if src_dict is not None:
                        print('S-{}\t{}'.format(sample_id, src_str))
                    if has_target:
                        print('T-{}\t{}'.format(sample_id, target_str))

                # Process top predictions
                for j, hypo in enumerate(hypos[i][:args.nbest]):
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo['tokens'].int().cpu(),
                        src_str=src_str,
                        alignment=hypo['alignment'].int().cpu()
                        if hypo['alignment'] is not None else None,
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=args.remove_bpe,
                    )

                    if not args.quiet:
                        print('H-{}\t{}\t{}'.format(sample_id, hypo['score'],
                                                    hypo_str))
                        print('P-{}\t{}'.format(
                            sample_id, ' '.join(
                                map(
                                    lambda x: '{:.4f}'.format(x),
                                    hypo['positional_scores'].tolist(),
                                ))))

                        if args.print_alignment:
                            print('A-{}\t{}'.format(
                                sample_id, ' '.join(
                                    map(lambda x: str(utils.item(x)),
                                        alignment))))

            wps_meter.update(num_generated_tokens)
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += sample['nsentences']
def main(args):
    setup_logger(args)

    args.interactive = sys.stdin.isatty(
    )  # Just make the code more understendable

    if args.file:
        data_descriptor = open(args.file, 'r')
    else:
        data_descriptor = sys.stdin

    if args.interactive:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1
    if args.buffer_size > 50000:
        print(
            "WARNING: To prevent memory exhaustion buffer size is set to 50000",
            file=sys.stderr)
        args.buffer_size = 50000

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    print(args, file=sys.stderr)

    use_cuda = torch.cuda.is_available() and not args.cpu

    processing_start = time.time()

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path), file=sys.stderr)
    model_paths = args.path.split(':')
    models, model_args, src_dict, tgt_dict = load_ensemble_for_inference(
        model_paths)
    if args.fp16:
        for model in models:
            model.half()

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(need_attn=args.print_alignment)

    # Initialize generator
    translator = SequenceGenerator(
        models,
        tgt_dict.get_metadata(),
        maxlen=args.max_target_positions,
        beam_size=args.beam,
        stop_early=(not args.no_early_stop),
        normalize_scores=(not args.unnormalized),
        len_penalty=args.lenpen,
        unk_penalty=args.unkpen,
        sampling=args.sampling,
        sampling_topk=args.sampling_topk,
        minlen=args.min_len,
        sampling_temperature=args.sampling_temperature)

    if use_cuda:
        translator.cuda()

    # Load BPE codes file
    if args.bpe_codes:
        codes = open(args.bpe_codes, 'r')
        bpe = BPE(codes)
    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    def make_result(src_str, hypos):
        result = Translation(
            src_str=src_str,
            hypos=[],
            pos_scores=[],
            alignments=[],
        )

        # Process top predictions
        for hypo in hypos[:min(len(hypos), args.nbest)]:
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu()
                if hypo['alignment'] is not None else None,
                align_dict=align_dict,
                tgt_dict=tgt_dict,
                remove_bpe=args.remove_bpe,
            )
            hypo_str = tokenizer.Tokenizer.detokenize(hypo_str, 'de').strip()
            result.hypos.append((hypo['score'], hypo_str))
            result.pos_scores.append('P\t' + ' '.join(
                f'{x:.4f}' for x in hypo['positional_scores'].tolist()))
            result.alignments.append('A\t' + ' '.join(
                str(utils.item(x))
                for x in alignment) if args.print_alignment else None)

        return result

    gen_timer = StopwatchMeter()

    def process_batch(batch):
        tokens = batch.tokens
        lengths = batch.lengths

        if use_cuda:
            tokens = tokens.cuda()
            lengths = lengths.cuda()

        translation_start = time.time()
        gen_timer.start()
        translations = translator.generate(
            tokens,
            lengths,
            maxlen=int(args.max_len_a * tokens.size(1) + args.max_len_b),
        )
        gen_timer.stop(sum(len(h[0]['tokens']) for h in translations))
        dllogger.log(step='infer',
                     data={'latency': time.time() - translation_start})

        return [
            make_result(batch.srcs[i], t) for i, t in enumerate(translations)
        ]

    if args.interactive:
        print('| Type the input sentence and press return:')
    for inputs in buffered_read(args.buffer_size, data_descriptor):
        indices = []
        results = []
        for batch, batch_indices in make_batches(inputs, args, src_dict,
                                                 args.max_positions, bpe):
            indices.extend(batch_indices)
            results += process_batch(batch)

        for i in np.argsort(indices):
            result = results[i]
            print(result.src_str, file=sys.stderr)
            for hypo, pos_scores, align in zip(result.hypos, result.pos_scores,
                                               result.alignments):
                print(f'Score {hypo[0]}', file=sys.stderr)
                print(hypo[1])
                print(pos_scores, file=sys.stderr)
                if align is not None:
                    print(align, file=sys.stderr)

    if args.file:
        data_descriptor.close()

    log_dict = {
        'throughput': 1. / gen_timer.avg,
        'latency_avg': sum(gen_timer.intervals) / len(gen_timer.intervals),
        'latency_p90': gen_timer.p(90),
        'latency_p95': gen_timer.p(95),
        'latency_p99': gen_timer.p(99),
        'total_infernece_time': gen_timer.sum,
        'total_run_time': time.time() - processing_start,
    }
    print('Translation time: {} s'.format(log_dict['total_infernece_time']),
          file=sys.stderr)
    print('Model throughput (beam {}): {} tokens/s'.format(
        args.beam, log_dict['throughput']),
          file=sys.stderr)
    print(
        'Latency:\n\tAverage {:.3f}s\n\tp90 {:.3f}s\n\tp95 {:.3f}s\n\tp99 {:.3f}s'
        .format(log_dict['latency_avg'], log_dict['latency_p90'],
                log_dict['latency_p95'], log_dict['latency_p99']),
        file=sys.stderr)
    print('End to end time: {} s'.format(log_dict['total_run_time']),
          file=sys.stderr)
    dllogger.log(step=(), data=log_dict)
예제 #21
0
def main(args):
    import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = utils.load_ensemble_for_inference(
        args.path.split(':'),
        task,
        model_arg_overrides=eval(args.model_overrides),
    )

    # Set dictionaries
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()

    # Initialize generator
    translator = SequenceGenerator(
        models,
        tgt_dict,
        beam_size=args.beam,
        minlen=args.min_len,
        stop_early=(not args.no_early_stop),
        normalize_scores=(not args.unnormalized),
        len_penalty=args.lenpen,
        unk_penalty=args.unkpen,
        sampling=args.sampling,
        sampling_topk=args.sampling_topk,
        sampling_temperature=args.sampling_temperature,
        diverse_beam_groups=args.diverse_beam_groups,
        diverse_beam_strength=args.diverse_beam_strength,
        match_source_len=args.match_source_len,
        no_repeat_ngram_size=args.no_repeat_ngram_size,
    )

    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    def make_result(src_str, hypos):
        result = Translation(
            src_str='O\t{}'.format(src_str),
            hypos=[],
            pos_scores=[],
            alignments=[],
        )

        # Process top predictions
        for hypo in hypos[:min(len(hypos), args.nbest)]:
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu()
                if hypo['alignment'] is not None else None,
                align_dict=align_dict,
                tgt_dict=tgt_dict,
                remove_bpe=args.remove_bpe,
            )
            result.hypos.append('H\t{}\t{}'.format(hypo['score'], hypo_str))
            result.pos_scores.append('P\t{}'.format(' '.join(
                map(
                    lambda x: '{:.4f}'.format(x),
                    hypo['positional_scores'].tolist(),
                ))))
            result.alignments.append('A\t{}'.format(' '.join(
                map(lambda x: str(utils.item(x)), alignment))) if args.
                                     print_alignment else None)
        return result

    def process_batch(batch):
        tokens = batch.tokens
        lengths = batch.lengths

        if use_cuda:
            tokens = tokens.cuda()
            lengths = lengths.cuda()

        encoder_input = {'src_tokens': tokens, 'src_lengths': lengths}
        translations = translator.generate(
            encoder_input,
            maxlen=int(args.max_len_a * tokens.size(1) + args.max_len_b),
        )

        return [
            make_result(batch.srcs[i], t) for i, t in enumerate(translations)
        ]

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if args.buffer_size > 1:
        print('| Sentence buffer size:', args.buffer_size)
    print('| Type the input sentence and press return:')
    for inputs in buffered_read(args.input, args.buffer_size):
        indices = []
        results = []
        for batch, batch_indices in make_batches(inputs, args, task,
                                                 max_positions):
            indices.extend(batch_indices)
            results.extend(process_batch(batch))

        for i in np.argsort(indices):
            result = results[i]
            print(result.src_str)
            for hypo, pos_scores, align in zip(result.hypos, result.pos_scores,
                                               result.alignments):
                print(hypo)
                print(pos_scores)
                if align is not None:
                    print(align)
예제 #22
0
def main(args):
    import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = utils.load_ensemble_for_inference(
        args.path.split(':'),
        task,
        model_arg_overrides=eval(args.model_overrides),
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(args)

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if args.buffer_size > 1:
        print('| Sentence buffer size:', args.buffer_size)
    print('| Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for batch in make_batches(inputs, args, task, max_positions):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translations = task.inference_step(generator, models, sample)
            for i, (id,
                    hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                results.append((start_id + id, src_tokens_i, hypos))

        # sort output to match input order
        for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id, src_str))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu()
                    if hypo['alignment'] is not None else None,
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )
                print('H-{}\t{}\t{}'.format(id, hypo['score'], hypo_str))
                print('P-{}\t{}'.format(
                    id, ' '.join(
                        map(lambda x: '{:.4f}'.format(x),
                            hypo['positional_scores'].tolist()))))
                if args.print_alignment:
                    print('A-{}\t{}'.format(
                        id,
                        ' '.join(map(lambda x: str(utils.item(x)),
                                     alignment))))

        # update running id counter
        start_id += len(results)
예제 #23
0
def main(cfg: FairseqConfig):
    if isinstance(cfg, Namespace):
        cfg = convert_namespace_to_omegaconf(cfg)

    start_time = time.time()
    total_translate_time = 0

    utils.import_user_module(cfg.common)

    if cfg.interactive.buffer_size < 1:
        cfg.interactive.buffer_size = 1
    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.batch_size = 1

    assert (not cfg.generation.sampling
            or cfg.generation.nbest == cfg.generation.beam
            ), "--sampling requires --nbest to be equal to --beam"
    assert (not cfg.dataset.batch_size
            or cfg.dataset.batch_size <= cfg.interactive.buffer_size
            ), "--batch-size cannot be larger than --buffer-size"

    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(cfg.task)

    # Load ensemble
    overrides = ast.literal_eval(cfg.common_eval.model_overrides)
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        if model is None:
            continue
        if cfg.common.fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Initialize generator
    generator = task.build_generator(models, cfg.generation)

    # Handle tokenization and BPE
    tokenizer = task.build_tokenizer(cfg.tokenizer)
    bpe = task.build_bpe(cfg.bpe)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(cfg.generation.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if cfg.generation.constraints:
        logger.warning(
            "NOTE: Constrained decoding currently assumes a shared subword vocabulary."
        )

    if cfg.interactive.buffer_size > 1:
        logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size)
    logger.info("NOTE: hypothesis and token scores are output in base 2")
    logger.info("Type the input sentence and press return:")
    start_id = 0
    for inputs in buffered_read(cfg.interactive.input,
                                cfg.interactive.buffer_size):
        # inputs remains list of length 1 in interactive use
        results = []
        for batch in make_batches(inputs, cfg, task, max_positions, encode_fn):
            bsz = batch.src_tokens.size(0)
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            constraints = batch.constraints
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()
                if constraints is not None:
                    constraints = constraints.cuda()

            sample = {
                "net_input": {
                    "src_tokens": src_tokens,
                    "src_lengths": src_lengths,
                },
            }
            translate_start_time = time.time()
            translations = task.inference_step(generator,
                                               models,
                                               sample,
                                               constraints=constraints)
            translate_time = time.time() - translate_start_time
            total_translate_time += translate_time
            list_constraints = [[] for _ in range(bsz)]
            if cfg.generation.constraints:
                list_constraints = [unpack_constraints(c) for c in constraints]
            for i, (id,
                    hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                constraints = list_constraints[i]
                results.append((
                    start_id + id,
                    src_tokens_i,
                    hypos,
                    {
                        "constraints": constraints,
                        "time": translate_time / len(translations),
                    },
                ))

        # sort output to match input order
        for id_, src_tokens, hypos, info in sorted(results,
                                                   key=lambda x: x[0]):
            src_str = ''
            if src_dict is not None:
                src_str = src_dict.string(src_tokens,
                                          cfg.common_eval.post_process)
                print("S-{}\t{}".format(id_, src_str))
                print("W-{}\t{:.3f}\tseconds".format(id_, info["time"]))
                for constraint in info["constraints"]:
                    print("C-{}\t{}".format(
                        id_,
                        tgt_dict.string(constraint,
                                        cfg.common_eval.post_process)))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), cfg.generation.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo["tokens"].int().cpu(),
                    src_str=src_str,
                    alignment=hypo["alignment"],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=cfg.common_eval.post_process,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(
                        generator),
                    input_str=encode_fn(
                        inputs[0])  # take str element from list
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo["score"] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print("H-{}\t{}\t{}".format(id_, score, hypo_str))
                # detokenized hypothesis
                print("D-{}\t{}\t{}".format(id_, score, detok_hypo_str))
                print("P-{}\t{}".format(
                    id_,
                    " ".join(
                        map(
                            lambda x: "{:.4f}".format(x),
                            # convert from base e to base 2
                            hypo["positional_scores"].div_(math.log(2)
                                                           ).tolist(),
                        )),
                ))
                if cfg.generation.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print("A-{}\t{}".format(id_, alignment_str))

        # update running id_ counter
        start_id += len(inputs)

    logger.info("Total time: {:.3f} seconds; translation time: {:.3f}".format(
        time.time() - start_time, total_translate_time))
예제 #24
0
def _main(cfg: DictConfig, output_file):
    logging.basicConfig(
        format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        level=os.environ.get("LOGLEVEL", "INFO").upper(),
        stream=output_file,
    )
    logger = logging.getLogger("fairseq_cli.generate")

    utils.import_user_module(cfg.common)

    if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
        cfg.dataset.max_tokens = 12000
    logger.info(cfg)

    # Fix seed for stochastic decoding
    if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
        np.random.seed(cfg.common.seed)
        utils.set_torch_seed(cfg.common.seed)

    use_cuda = torch.cuda.is_available() and not cfg.common.cpu

    # Load dataset splits
    task = tasks.setup_task(cfg.task)

    # Set dictionaries
    try:
        src_dict = getattr(task, "source_dictionary", None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    overrides = ast.literal_eval(cfg.common_eval.model_overrides)

    # Load ensemble
    logger.info("loading model(s) from {}".format(cfg.common_eval.path))
    models, saved_cfg = checkpoint_utils.load_model_ensemble(
        utils.split_paths(cfg.common_eval.path),
        arg_overrides=overrides,
        task=task,
        suffix=cfg.checkpoint.checkpoint_suffix,
        strict=(cfg.checkpoint.checkpoint_shard_count == 1),
        num_shards=cfg.checkpoint.checkpoint_shard_count,
    )

    # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
    task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)

    if cfg.generation.lm_path is not None:
        overrides["data"] = cfg.task.data

        try:
            lms, _ = checkpoint_utils.load_model_ensemble(
                [cfg.generation.lm_path], arg_overrides=overrides, task=None)
        except:
            logger.warning(
                f"Failed to load language model! Please make sure that the language model dict is the same "
                f"as target dict and is located in the data dir ({cfg.task.data})"
            )
            raise

        assert len(lms) == 1
    else:
        lms = [None]

    # Optimize ensemble for generation
    for model in chain(models, lms):
        if model is None:
            continue
        if cfg.common.fp16:
            model.half()
        if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
            model.cuda()
        model.prepare_for_inference_(cfg)

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(cfg.generation.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(cfg.dataset.gen_subset),
        max_tokens=cfg.dataset.max_tokens,
        max_sentences=cfg.dataset.batch_size,
        max_positions=utils.resolve_max_positions(
            task.max_positions(), *[m.max_positions() for m in models]),
        ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
        seed=cfg.common.seed,
        num_shards=cfg.distributed_training.distributed_world_size,
        shard_id=cfg.distributed_training.distributed_rank,
        num_workers=cfg.dataset.num_workers,
        data_buffer_size=cfg.dataset.data_buffer_size,
    ).next_epoch_itr(shuffle=False)
    progress = progress_bar.progress_bar(
        itr,
        log_format=cfg.common.log_format,
        log_interval=cfg.common.log_interval,
        default_log_format=("tqdm"
                            if not cfg.common.no_progress_bar else "simple"),
    )

    # Initialize generator
    gen_timer = StopwatchMeter()

    extra_gen_cls_kwargs = {
        "lm_model": lms[0],
        "lm_weight": cfg.generation.lm_weight
    }
    generator = task.build_generator(models,
                                     cfg.generation,
                                     extra_gen_cls_kwargs=extra_gen_cls_kwargs)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(cfg.tokenizer)
    bpe = encoders.build_bpe(cfg.bpe)

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    scorer = scoring.build_scorer(cfg.scoring, tgt_dict)

    num_sentences = 0
    has_target = True
    wps_meter = TimeMeter()
    for sample in progress:
        sample = utils.move_to_cuda(sample) if use_cuda else sample
        if "net_input" not in sample:
            continue

        prefix_tokens = None
        if cfg.generation.prefix_size > 0:
            prefix_tokens = sample["target"][:, :cfg.generation.prefix_size]

        constraints = None
        if "constraints" in sample:
            constraints = sample["constraints"]

        gen_timer.start()
        hypos = task.inference_step(
            generator,
            models,
            sample,
            prefix_tokens=prefix_tokens,
            constraints=constraints,
        )
        num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
        gen_timer.stop(num_generated_tokens)

        for i, sample_id in enumerate(sample["id"].tolist()):
            has_target = sample["target"] is not None

            # Remove padding
            if "src_tokens" in sample["net_input"]:
                src_tokens = utils.strip_pad(
                    sample["net_input"]["src_tokens"][i, :], tgt_dict.pad())
            else:
                src_tokens = None

            target_tokens = None
            if has_target:
                target_tokens = (utils.strip_pad(sample["target"][i, :],
                                                 tgt_dict.pad()).int().cpu())

            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = task.dataset(
                    cfg.dataset.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(
                    cfg.dataset.gen_subset).tgt.get_original_text(sample_id)
            else:
                if src_dict is not None:
                    src_str = src_dict.string(src_tokens,
                                              cfg.common_eval.post_process)
                else:
                    src_str = ""
                if has_target:
                    target_str = tgt_dict.string(
                        target_tokens,
                        cfg.common_eval.post_process,
                        escape_unk=True,
                        extra_symbols_to_ignore=
                        get_symbols_to_strip_from_output(generator),
                    )

            src_str = decode_fn(src_str)
            if has_target:
                target_str = decode_fn(target_str)

            if not cfg.common_eval.quiet:
                if src_dict is not None:
                    print("S-{}\t{}".format(sample_id, src_str),
                          file=output_file)
                if has_target:
                    print("T-{}\t{}".format(sample_id, target_str),
                          file=output_file)

            # Process top predictions
            for j, hypo in enumerate(hypos[i][:cfg.generation.nbest]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo["tokens"].int().cpu(),
                    src_str=src_str,
                    alignment=hypo["alignment"],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=cfg.common_eval.post_process,
                    extra_symbols_to_ignore=get_symbols_to_strip_from_output(
                        generator),
                )
                detok_hypo_str = decode_fn(hypo_str)
                if not cfg.common_eval.quiet:
                    score = hypo["score"] / math.log(2)  # convert to base 2
                    # original hypothesis (after tokenization and BPE)
                    print(
                        "H-{}\t{}\t{}".format(sample_id, score, hypo_str),
                        file=output_file,
                    )
                    # detokenized hypothesis
                    print(
                        "D-{}\t{}\t{}".format(sample_id, score,
                                              detok_hypo_str),
                        file=output_file,
                    )
                    print(
                        "P-{}\t{}".format(
                            sample_id,
                            " ".join(
                                map(
                                    lambda x: "{:.4f}".format(x),
                                    # convert from base e to base 2
                                    hypo["positional_scores"].div_(math.log(2)
                                                                   ).tolist(),
                                )),
                        ),
                        file=output_file,
                    )

                    if cfg.generation.print_alignment:
                        print(
                            "A-{}\t{}".format(
                                sample_id,
                                " ".join([
                                    "{}-{}".format(src_idx, tgt_idx)
                                    for src_idx, tgt_idx in alignment
                                ]),
                            ),
                            file=output_file,
                        )

                    if cfg.generation.print_step:
                        print(
                            "I-{}\t{}".format(sample_id, hypo["steps"]),
                            file=output_file,
                        )

                    if cfg.generation.retain_iter_history:
                        for step, h in enumerate(hypo["history"]):
                            _, h_str, _ = utils.post_process_prediction(
                                hypo_tokens=h["tokens"].int().cpu(),
                                src_str=src_str,
                                alignment=None,
                                align_dict=None,
                                tgt_dict=tgt_dict,
                                remove_bpe=None,
                            )
                            print(
                                "E-{}_{}\t{}".format(sample_id, step, h_str),
                                file=output_file,
                            )

                # Score only the top hypothesis
                if has_target and j == 0:
                    if align_dict is not None or cfg.common_eval.post_process is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tgt_dict.encode_line(
                            target_str, add_if_not_exist=True)
                        hypo_tokens = tgt_dict.encode_line(
                            detok_hypo_str, add_if_not_exist=True)
                    if hasattr(scorer, "add_string"):
                        scorer.add_string(target_str, detok_hypo_str)
                    else:
                        scorer.add(target_tokens, hypo_tokens)

        wps_meter.update(num_generated_tokens)
        progress.log({"wps": round(wps_meter.avg)})
        num_sentences += (sample["nsentences"]
                          if "nsentences" in sample else sample["id"].numel())

    logger.info("NOTE: hypothesis and token scores are output in base 2")
    logger.info(
        "Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)"
        .format(
            num_sentences,
            gen_timer.n,
            gen_timer.sum,
            num_sentences / gen_timer.sum,
            1.0 / gen_timer.avg,
        ))
    if has_target:
        if cfg.bpe and not cfg.generation.sacrebleu:
            if cfg.common_eval.post_process:
                logger.warning(
                    "BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
                )
            else:
                logger.warning(
                    "If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words.  Use --sacrebleu for standard 13a BLEU tokenization"
                )
        # use print to be consistent with other main outputs: S-, H-, T-, D- and so on
        print(
            "Generate {} with beam={}: {}".format(cfg.dataset.gen_subset,
                                                  cfg.generation.beam,
                                                  scorer.result_string()),
            file=output_file,
        )

    return scorer
예제 #25
0
def fairseq_translate(tokenizer, bpe, args, task, models, use_cuda, generator,
                      tgt_dict, src_dict, orig_sen):
    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Getting the input sentence and return')
    start_id = 0

    inputs = [orig_sen]
    results = []
    for batch in make_batches(inputs, args, task, max_positions, encode_fn):
        src_tokens = batch.src_tokens
        src_lengths = batch.src_lengths
        if use_cuda:
            src_tokens = src_tokens.cuda()
            src_lengths = src_lengths.cuda()

        sample = {
            'net_input': {
                'src_tokens': src_tokens,
                'src_lengths': src_lengths,
            },
        }
        translations = task.inference_step(generator, models, sample)
        for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
            src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
            results.append((start_id + id, src_tokens_i, hypos))

    # sort output to match input order
    for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
        if src_dict is not None:
            # print("src_tokens:", src_tokens)
            src_str = src_dict.string(src_tokens, args.remove_bpe)
            # print('original_sentence-{}'.format(src_str))

        # Process top predictions
        for hypo in hypos[:min(len(hypos), args.nbest)]:
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'],
                align_dict=align_dict,
                tgt_dict=tgt_dict,
                remove_bpe=args.remove_bpe,
            )
            # print("hypo_str before decode:", hypo_str)
            hypo_str = decode_fn(hypo_str)
            return hypo_str
예제 #26
0
def main(args):
    assert args.path is not None, '--path required for generation!'
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(':'),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for sample in t:
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if 'net_input' not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample['target'][:, :args.prefix_size]

            gen_timer.start()
            hypos = task.inference_step(generator, models, sample, prefix_tokens)
            num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample['id'].tolist()):
                has_target = sample['target'] is not None

                # Remove padding
                src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
                target_tokens = None
                if has_target:
                    target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu()

                # Either retrieve the original sentences or regenerate them from tokens.
                if align_dict is not None:
                    src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
                    target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
                else:
                    if src_dict is not None:
                        src_str = src_dict.string(src_tokens, args.remove_bpe)
                    else:
                        src_str = ""
                    if has_target:
                        target_str = tgt_dict.string(target_tokens, args.remove_bpe, escape_unk=True)

                if not args.quiet:
                    if src_dict is not None:
                        print('S-{}\t{}'.format(sample_id, src_str))
                    if has_target:
                        print('T-{}\t{}'.format(sample_id, target_str))

                # Process top predictions
                for j, hypo in enumerate(hypos[i][:args.nbest]):
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo['tokens'].int().cpu(),
                        src_str=src_str,
                        alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=args.remove_bpe,
                    )

                    if not args.quiet:
                        print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))
                        print('P-{}\t{}'.format(
                            sample_id,
                            ' '.join(map(
                                lambda x: '{:.4f}'.format(x),
                                hypo['positional_scores'].tolist(),
                            ))
                        ))

                        if args.print_alignment:
                            print('A-{}\t{}'.format(
                                sample_id,
                                ' '.join(map(lambda x: str(utils.item(x)), alignment))
                            ))

                    # Score only the top hypothesis
                    if has_target and j == 0:
                        if align_dict is not None or args.remove_bpe is not None:
                            # Convert back to tokens for evaluation with unk replacement and/or without BPE
                            target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True)
                        if hasattr(scorer, 'add_string'):
                            scorer.add_string(target_str, hypo_str)
                        else:
                            scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(num_generated_tokens)
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += sample['nsentences']

    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
    return scorer
    def __init__(self,
                 data_dir,
                 checkpoint_path,
                 batch_size=25,
                 constrained_decoding=False):

        self.constrained_decoding = constrained_decoding
        self.parser = options.get_generation_parser(interactive=True)
        # buffer_size is currently not used but we just initialize it to batch
        # size + 1 to avoid any assertion errors.
        if self.constrained_decoding:
            self.parser.set_defaults(
                path=checkpoint_path,
                remove_bpe="subword_nmt",
                num_wokers=-1,
                constraints="ordered",
                batch_size=batch_size,
                buffer_size=batch_size + 1,
            )
        else:
            self.parser.set_defaults(
                path=checkpoint_path,
                remove_bpe="subword_nmt",
                num_wokers=-1,
                batch_size=batch_size,
                buffer_size=batch_size + 1,
            )
        args = options.parse_args_and_arch(self.parser, input_args=[data_dir])
        # we are explictly setting src_lang and tgt_lang here
        # generally the data_dir we pass contains {split}-{src_lang}-{tgt_lang}.*.idx files from
        # which fairseq infers the src and tgt langs(if these are not passed). In deployment we dont
        # use any idx files and only store the SRC and TGT dictionaries.
        args.source_lang = "SRC"
        args.target_lang = "TGT"

        args.skip_invalid_size_inputs_valid_test = False

        # we have custom architechtures in this folder and we will let fairseq
        # import this
        args.user_dir = "src/model_configs"
        self.cfg = convert_namespace_to_omegaconf(args)

        utils.import_user_module(self.cfg.common)

        if self.cfg.interactive.buffer_size < 1:
            self.cfg.interactive.buffer_size = 1
        if self.cfg.dataset.max_tokens is None and self.cfg.dataset.batch_size is None:
            self.cfg.dataset.batch_size = 1

        assert (not self.cfg.generation.sampling
                or self.cfg.generation.nbest == self.cfg.generation.beam
                ), "--sampling requires --nbest to be equal to --beam"
        assert (not self.cfg.dataset.batch_size or
                self.cfg.dataset.batch_size <= self.cfg.interactive.buffer_size
                ), "--batch-size cannot be larger than --buffer-size"

        # Fix seed for stochastic decoding
        # if self.cfg.common.seed is not None and not self.cfg.generation.no_seed_provided:
        #     np.random.seed(self.cfg.common.seed)
        #     utils.set_torch_seed(self.cfg.common.seed)

        # if not self.constrained_decoding:
        #     self.use_cuda = torch.cuda.is_available() and not self.cfg.common.cpu
        # else:
        #     self.use_cuda = False

        self.use_cuda = torch.cuda.is_available() and not self.cfg.common.cpu

        # Setup task, e.g., translation
        self.task = tasks.setup_task(self.cfg.task)

        # Load ensemble
        overrides = ast.literal_eval(self.cfg.common_eval.model_overrides)
        self.models, self._model_args = checkpoint_utils.load_model_ensemble(
            utils.split_paths(self.cfg.common_eval.path),
            arg_overrides=overrides,
            task=self.task,
            suffix=self.cfg.checkpoint.checkpoint_suffix,
            strict=(self.cfg.checkpoint.checkpoint_shard_count == 1),
            num_shards=self.cfg.checkpoint.checkpoint_shard_count,
        )

        # Set dictionaries
        self.src_dict = self.task.source_dictionary
        self.tgt_dict = self.task.target_dictionary

        # Optimize ensemble for generation
        for model in self.models:
            if model is None:
                continue
            if self.cfg.common.fp16:
                model.half()
            if (self.use_cuda and
                    not self.cfg.distributed_training.pipeline_model_parallel):
                model.cuda()
            model.prepare_for_inference_(self.cfg)

        # Initialize generator
        self.generator = self.task.build_generator(self.models,
                                                   self.cfg.generation)

        # Handle tokenization and BPE
        self.tokenizer = self.task.build_tokenizer(self.cfg.tokenizer)
        self.bpe = self.task.build_bpe(self.cfg.bpe)

        # Load alignment dictionary for unknown word replacement
        # (None if no unknown word replacement, empty if no path to align dictionary)
        self.align_dict = utils.load_align_dict(
            self.cfg.generation.replace_unk)

        self.max_positions = utils.resolve_max_positions(
            self.task.max_positions(),
            *[model.max_positions() for model in self.models])
예제 #28
0
def _generate_score(models, args, dataset, dataset_split):
    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load ensemble
    if not args.quiet:
        print(f"| loading model(s) from {', '.join(args.path)}")

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam)

    # Initialize generator
    translator = beam_decode.SequenceGenerator(
        models,
        beam_size=args.beam,
        stop_early=(not args.no_early_stop),
        normalize_scores=(not args.unnormalized),
        len_penalty=args.lenpen,
        unk_penalty=args.unkpen,
        word_reward=args.word_reward,
    )
    if use_cuda:
        translator.cuda()
    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Generate and compute BLEU score
    scorer = bleu.Scorer(
        dataset.dst_dict.pad(),
        dataset.dst_dict.eos(),
        dataset.dst_dict.unk(),
    )
    max_positions = min(model.max_encoder_positions() for model in models)
    itr = dataset.eval_dataloader(
        dataset_split,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
        skip_invalid_size_inputs_valid_test=(
            args.skip_invalid_size_inputs_valid_test),
    )
    if args.num_shards > 1:
        if args.shard_id < 0 or args.shard_id >= args.num_shards:
            raise ValueError('--shard-id must be between 0 and num_shards')
        itr = data.sharded_iterator(itr, args.num_shards, args.shard_id)

    num_sentences = 0
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        gen_timer = StopwatchMeter()
        translations = translator.generate_batched_itr(t,
                                                       maxlen_a=args.max_len_a,
                                                       maxlen_b=args.max_len_b,
                                                       cuda=use_cuda,
                                                       timer=gen_timer)
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
            target_tokens = target_tokens.int().cpu()
            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = dataset.splits[dataset_split].src.\
                    get_original_text(sample_id)
                target_str = dataset.splits[dataset_split].dst.\
                    get_original_text(sample_id)
            else:
                src_str = dataset.src_dict.string(src_tokens, args.remove_bpe)
                target_str = dataset.dst_dict.string(
                    target_tokens,
                    args.remove_bpe,
                    escape_unk=True,
                )

            if not args.quiet:
                print(f'S-{sample_id}\t{src_str)}')
                print(f'T-{sample_id}\t{target_str}')

            # Process top predictions
            for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu(),
                    align_dict=align_dict,
                    dst_dict=dataset.dst_dict,
                    remove_bpe=args.remove_bpe)

                if not args.quiet:
                    print(f"H-{sample_id}\t{hypo['score']}\t{hypo_str}")
                    print(
                        f"A-{sample_id}\t{' '.join(map(lambda x: str(utils.item(x)), alignment))}"
                    )

                # Score only the top hypothesis
                if i == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement
                        # and/or without BPE
                        target_tokens = tokenizer.Tokenizer.tokenize(
                            target_str,
                            dataset.dst_dict,
                            add_if_not_exist=True,
                        )
                    scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(src_tokens.size(0))
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += 1

    return scorer, num_sentences, gen_timer
예제 #29
0
def main(args):
    utils.import_user_module(args)

    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(models, args)

    # Handle tokenization and BPE
    tokenizer = encoders.build_tokenizer(args)
    bpe = encoders.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    def decode_fn(x):
        if bpe is not None:
            x = bpe.decode(x)
        if tokenizer is not None:
            x = tokenizer.decode(x)
        return x

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if args.buffer_size > 1:
        logger.info('Sentence buffer size: %s', args.buffer_size)
    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info('Type the input sentence and press return:')
    start_id = 0
    for inputs in buffered_read(args.input, args.buffer_size):
        results = []
        for batch in make_batches(inputs, args, task, max_positions,
                                  encode_fn):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translations = task.inference_step(generator, models, sample)
            for i, (id,
                    hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                results.append((start_id + id, src_tokens_i, hypos))

        # sort output to match input order
        for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id, src_str))

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'],
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )
                detok_hypo_str = decode_fn(hypo_str)
                score = hypo['score'] / math.log(2)  # convert to base 2
                # original hypothesis (after tokenization and BPE)
                print('H-{}\t{}\t{}'.format(id, score, hypo_str))
                # detokenized hypothesis
                print('D-{}\t{}\t{}'.format(id, score, detok_hypo_str))
                print('P-{}\t{}'.format(
                    id,
                    ' '.join(
                        map(
                            lambda x: '{:.4f}'.format(x),
                            # convert from base e to base 2
                            hypo['positional_scores'].div_(math.log(2)
                                                           ).tolist(),
                        ))))
                if args.print_alignment:
                    alignment_str = " ".join(
                        ["{}-{}".format(src, tgt) for src, tgt in alignment])
                    print('A-{}\t{}'.format(id, alignment_str))
                if 'enc_selection' in hypo:
                    print('Menc-{}\t{}'.format(id, hypo['enc_selection']))
                if 'dec_selection' in hypo:
                    print('Mdec-{}\t{}'.format(id, hypo['dec_selection']))
                if args.print_attn_confidence:
                    print('C-{}\t{}'.format(id, hypo['enc_self_attn_conf']))

        # update running id counter
        start_id += len(inputs)
예제 #30
0
def _generate_score(models, args, task, dataset_split, optimize=True):
    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load ensemble
    if not args.quiet:
        print("| loading model(s) from {}".format(", ".join(args.path)))

    # Optimize ensemble for generation
    if optimize:
        for model in models:
            model.make_generation_fast_(beamable_mm_beam_size=None if args.
                                        no_beamable_mm else args.beam)

    translator = build_sequence_generator(args, task, models)
    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Keep track of translations
    # Initialize with empty translations
    # and zero probs scores
    translated_sentences = [""] * len(task.dataset(dataset_split))
    translated_scores = [0.0] * len(task.dataset(dataset_split))

    # Generate and compute BLEU score
    dst_dict = task.target_dictionary
    scorer = bleu.Scorer(dst_dict.pad(), dst_dict.eos(), dst_dict.unk())
    itr = get_eval_itr(args, models, task, dataset_split)

    num_sentences = 0
    translation_samples = []
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        # Keep more detailed timing when invoked from benchmark
        if "keep_detailed_timing" in args:
            gen_timer = pytorch_translate_utils.BucketStopwatchMeter(
                args.increment, args.max_length, args.samples_per_length)
        else:
            gen_timer = StopwatchMeter()
        translations = translator.generate_batched_itr(
            t,
            maxlen_a=args.max_len_a,
            maxlen_b=args.max_len_b,
            cuda=use_cuda,
            timer=gen_timer,
            prefix_size=1
            if pytorch_translate_data.is_multilingual(args) else 0,
        )
        if pytorch_translate_data.is_multilingual(args):
            first_best_translations = _iter_first_best_multilingual
        else:
            first_best_translations = _iter_first_best_bilingual
        for trans_info in first_best_translations(args, task, dataset_split,
                                                  translations, align_dict):
            scorer.add(trans_info.target_tokens, trans_info.hypo_tokens)
            translated_sentences[trans_info.sample_id] = trans_info.hypo_str
            translated_scores[trans_info.sample_id] = trans_info.hypo_score
            translation_samples.append(
                collections.OrderedDict({
                    "sample_id": trans_info.sample_id,
                    "src_str": trans_info.src_str,
                    "target_str": trans_info.target_str,
                    "hypo_str": trans_info.hypo_str,
                }))
            wps_meter.update(trans_info.src_tokens.size(0))
            t.log({"wps": round(wps_meter.avg)})
            num_sentences += 1

    # If applicable, save the translations to the output file
    # For eg. external evaluation
    if getattr(args, "translation_output_file", False):
        with open(args.translation_output_file, "w") as out_file:
            for hypo_str in translated_sentences:
                print(hypo_str, file=out_file)

    if getattr(args, "translation_probs_file", False):
        with open(args.translation_probs_file, "w") as out_file:
            for hypo_score in translated_scores:
                print(np.exp(hypo_score), file=out_file)

    return scorer, num_sentences, gen_timer, translation_samples
예제 #31
0
def main(args):
    assert args.path is not None, '--path required for generation!'
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'

    import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset, args=args)
    print('| {} {} {} examples'.format(args.data, args.gen_subset,
                                       len(task.dataset(args.gen_subset))))

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    args.unk_idx = task.src_dict.indices['<unk>']
    args.dict_len = task.src_dict.indices.__len__()
    if '[APPEND]' in task.src_dict.indices.keys():
        args.APPEND_ID = task.src_dict.indices['[APPEND]']
        print("[APPEND] ID: {}".format(args.APPEND_ID))
    else:
        args.APPEND_ID = -1
    if '[SRC]' in task.src_dict.indices.keys():
        args.SRC_ID = task.src_dict.indices['[SRC]']
        print("[SRC] ID: {}".format(args.SRC_ID))
    else:
        args.SRC_ID = -1
    if '[TGT]' in task.src_dict.indices.keys():
        args.TGT_ID = task.src_dict.indices['[TGT]']
        print("[TGT] ID: {}".format(args.TGT_ID))
    else:
        args.TGT_ID = -1
    if '[SEP]' in task.src_dict.indices.keys():
        args.SEP_ID = task.src_dict.indices['[SEP]']
        print("[SEP] ID: {}".format(args.SEP_ID))
    else:
        args.SEP_ID = -1
    if '</s>' in task.src_dict.indices.keys():
        args.EOS_ID = task.src_dict.indices['</s>']
    else:
        args.EOD_ID = -1
    if '<pad>' in task.src_dict.indices.keys():
        args.PAD_ID = task.src_dict.indices['<pad>']
    else:
        args.PAD_ID = -1

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = utils.load_ensemble_for_inference(
        args.path.split(':'),
        task,
        model_arg_overrides=eval(args.model_overrides),
    )
    _model_args.avgpen = args.avgpen
    task.datasets['test'].args = _model_args

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    select_retrieve_tokens = []
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        trans_results = []
        for sample in t:
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if 'net_input' not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample['target'][:, :args.prefix_size]

            gen_timer.start()
            hypos, encoder_outs = task.inference_step(generator, models,
                                                      sample, prefix_tokens)
            num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample['id'].tolist()):
                has_target = sample['target'] is not None

                # Remove padding
                src_tokens, retrieve_source_tokens, retrieve_target_tokens = sample[
                    'net_input']['src_tokens']
                retrieve_tokens = list(
                    itertools.chain.from_iterable(
                        zip(retrieve_source_tokens, retrieve_target_tokens)))
                retrieve_tokens = torch.cat(retrieve_tokens, dim=1)
                all_tokens = torch.cat([src_tokens, retrieve_tokens], dim=1)
                src_tokens = utils.strip_pad(all_tokens[i, :], tgt_dict.pad())
                target_tokens = None
                if has_target:
                    target_tokens = utils.strip_pad(
                        sample['target'][i, :], tgt_dict.pad()).int().cpu()

                #

                # Either retrieve the original sentences or regenerate them from tokens.
                if align_dict is not None:
                    src_str = task.dataset(
                        args.gen_subset).src.get_original_text(sample_id)
                    target_str = task.dataset(
                        args.gen_subset).tgt.get_original_text(sample_id)
                else:
                    if src_dict is not None:
                        src_str = src_dict.string(src_tokens, args.remove_bpe)
                    else:
                        src_str = ""
                    if has_target:
                        target_str = tgt_dict.string(target_tokens,
                                                     args.remove_bpe,
                                                     escape_unk=True)

                if not args.quiet:
                    if src_dict is not None:
                        print('S-{}\t{}'.format(sample_id, src_str))
                    if has_target:
                        print('T-{}\t{}'.format(sample_id, target_str))

                # add select tokens
                select_retrieve_tokens.append([
                    sample_id, src_str, target_str,
                    sample['predict_ground_truth'][i, :],
                    retrieve_tokens[i, :],
                    encoder_outs[0]['new_retrieve_tokens'][i, :],
                    utils.strip_pad(retrieve_tokens[i, :],
                                    src_dict.pad()).tolist(),
                    utils.strip_pad(
                        encoder_outs[0]['new_retrieve_tokens'][i, :],
                        src_dict.pad()).tolist()
                ])
                # Process top predictions
                for i, hypo in enumerate(
                        hypos[i][:min(len(hypos), args.nbest)]):
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo['tokens'].int().cpu(),
                        src_str=src_str,
                        alignment=hypo['alignment'].int().cpu()
                        if hypo['alignment'] is not None else None,
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=args.remove_bpe,
                    )

                    trans_results.append((sample_id, hypo_str))
                    if not args.quiet:
                        print('H-{}\t{}\t{}'.format(sample_id, hypo['score'],
                                                    hypo_str))
                        print('P-{}\t{}'.format(
                            sample_id, ' '.join(
                                map(
                                    lambda x: '{:.4f}'.format(x),
                                    hypo['positional_scores'].tolist(),
                                ))))
                        if args.print_alignment:
                            print('A-{}\t{}'.format(
                                sample_id, ' '.join(
                                    map(lambda x: str(utils.item(x)),
                                        alignment))))

                    # Score only the top hypothesis
                    if has_target and i == 0:
                        if align_dict is not None or args.remove_bpe is not None:
                            # Convert back to tokens for evaluation with unk replacement and/or without BPE
                            target_tokens = tgt_dict.encode_line(
                                target_str, add_if_not_exist=True)
                        if hasattr(scorer, 'add_string'):
                            scorer.add_string(target_str, hypo_str)
                        else:
                            scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(num_generated_tokens)
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += sample['nsentences']

    print(
        '| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'
        .format(num_sentences, gen_timer.n, gen_timer.sum,
                num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        print('| Generate {} with beam={}: {}'.format(args.gen_subset,
                                                      args.beam,
                                                      scorer.result_string()))

    trans_results.sort(key=lambda key: key[0])
    print("saving translation result to {}...".format(args.output))
    with open(args.output, "w", encoding="utf-8") as w:
        for item in trans_results:
            w.write("{}\n".format(item[1].replace("<<unk>>", "")))
    select_retrieve_tokens.sort(key=lambda key: key[0])
    orig_retrieve_tokens_length = 0
    select_retrieve_tokens_length = 0
    correct_tokens = 0
    with open(args.output + ".select", "w", encoding="utf-8") as w_select:
        for item in select_retrieve_tokens:
            sample_id, src_str, target_str, sample_predict_ground_truth, sample_orig_id, sample_select_retrieve_id, sample_orig_retrieve_tokens, sample_select_retrieve_tokens = item
            retrieve_str = src_dict.string(sample_orig_retrieve_tokens,
                                           args.remove_bpe)
            select_str = src_dict.string(sample_select_retrieve_tokens,
                                         args.remove_bpe)
            w_select.write("{}\n{}\n{}\n{}\n\n".format(src_str, target_str,
                                                       retrieve_str,
                                                       select_str))
            orig_retrieve_tokens_length += len(sample_orig_retrieve_tokens)
            select_retrieve_tokens_length += len(sample_select_retrieve_tokens)
            #calculate accuracy
            correct_tokens += (
                (sample_select_retrieve_id != _model_args.PAD_ID
                 ).long() == sample_predict_ground_truth).masked_fill(
                     (sample_orig_id == _model_args.PAD_ID).byte(), 0).sum()

    ratio = select_retrieve_tokens_length / float(orig_retrieve_tokens_length)
    accuracy = correct_tokens.tolist() / float(orig_retrieve_tokens_length)
    print("Selective Tokens: {}".format(ratio))
    print("Correct Tokens: {}".format(accuracy))

    with open("{}.RetrieveNMT.BLEU".format(args.output), "a",
              encoding="utf-8") as w:
        w.write(
            '{}->{}: Generate {} with beam={} and lenpen={}: {};\tSelection Ratio: {};\tAccuracy:{}\n'
            .format(args.source_lang, args.target_lang,
                    args.gen_subset, args.beam, args.lenpen,
                    scorer.result_string(), ratio, accuracy))

    return scorer
예제 #32
0
def main(args):
    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    model_paths = args.path.split(':')
    models, model_args = utils.load_ensemble_for_inference(model_paths, task, model_arg_overrides=eval(args.model_overrides))

    # Set dictionaries
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()

    # Initialize generator
    translator = SequenceGenerator(
        models, tgt_dict, beam_size=args.beam, minlen=args.min_len,
        stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized),
        len_penalty=args.lenpen, unk_penalty=args.unkpen,
        sampling=args.sampling, sampling_topk=args.sampling_topk, sampling_temperature=args.sampling_temperature,
        diverse_beam_groups=args.diverse_beam_groups, diverse_beam_strength=args.diverse_beam_strength,
    )

    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    def make_result(src_str, hypos):
        result = Translation(
            src_str='O\t{}'.format(src_str),
            hypos=[],
            pos_scores=[],
            alignments=[],
        )

        # Process top predictions
        for hypo in hypos[:min(len(hypos), args.nbest)]:
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
                align_dict=align_dict,
                tgt_dict=tgt_dict,
                remove_bpe=args.remove_bpe,
            )
            result.hypos.append('H\t{}\t{}'.format(hypo['score'], hypo_str))
            result.pos_scores.append('P\t{}'.format(
                ' '.join(map(
                    lambda x: '{:.4f}'.format(x),
                    hypo['positional_scores'].tolist(),
                ))
            ))
            result.alignments.append(
                'A\t{}'.format(' '.join(map(lambda x: str(utils.item(x)), alignment)))
                if args.print_alignment else None
            )
        return result

    def process_batch(batch):
        tokens = batch.tokens
        lengths = batch.lengths

        if use_cuda:
            tokens = tokens.cuda()
            lengths = lengths.cuda()

        translations = translator.generate(
            tokens,
            lengths,
            maxlen=int(args.max_len_a * tokens.size(1) + args.max_len_b),
        )

        return [make_result(batch.srcs[i], t) for i, t in enumerate(translations)]

    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

    if args.buffer_size > 1:
        print('| Sentence buffer size:', args.buffer_size)
    print('| Type the input sentence and press return:')
    for inputs in buffered_read(args.buffer_size):
        indices = []
        results = []
        for batch, batch_indices in make_batches(inputs, args, task, max_positions):
            indices.extend(batch_indices)
            results += process_batch(batch)

        for i in np.argsort(indices):
            result = results[i]
            print(result.src_str)
            for hypo, pos_scores, align in zip(result.hypos, result.pos_scores, result.alignments):
                print(hypo)
                print(pos_scores)
                if align is not None:
                    print(align)
예제 #33
0
파일: generate.py 프로젝트: ahiroto/ParlAI
def main():
    parser = options.get_parser('Generation')
    parser.add_argument('--path', metavar='FILE', required=True, action='append',
                        help='path(s) to model file(s)')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--batch-size', default=32, type=int, metavar='N',
                              help='batch size')
    dataset_args.add_argument('--gen-subset', default='test', metavar='SPLIT',
                              help='data subset to generate (train, valid, test)')
    options.add_generation_args(parser)

    args = parser.parse_args()
    if args.no_progress_bar and args.log_format is None:
        args.log_format = 'none'
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset
    if args.replace_unk is None:
        dataset = data.load_dataset(args.data, [args.gen_subset], args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(args.data, [args.gen_subset], args.source_lang, args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    # Load ensemble
    print('| loading model(s) from {}'.format(', '.join(args.path)))
    models, _ = utils.load_ensemble_for_inference(args.path, dataset.src_dict, dataset.dst_dict)

    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    print('| {} {} {} examples'.format(args.data, args.gen_subset, len(dataset.splits[args.gen_subset])))

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam)

    # Initialize generator
    translator = SequenceGenerator(
        models, beam_size=args.beam, stop_early=(not args.no_early_stop),
        normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
        unk_penalty=args.unkpen)
    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Generate and compute BLEU score
    scorer = bleu.Scorer(dataset.dst_dict.pad(), dataset.dst_dict.eos(), dataset.dst_dict.unk())
    max_positions = min(model.max_encoder_positions() for model in models)
    itr = dataset.eval_dataloader(
        args.gen_subset, max_sentences=args.batch_size, max_positions=max_positions,
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
    num_sentences = 0
    with utils.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        gen_timer = StopwatchMeter()
        translations = translator.generate_batched_itr(
            t, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b,
            cuda_device=0 if use_cuda else None, timer=gen_timer)
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
            target_tokens = target_tokens.int().cpu()
            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = dataset.splits[args.gen_subset].src.get_original_text(sample_id)
                target_str = dataset.splits[args.gen_subset].dst.get_original_text(sample_id)
            else:
                src_str = dataset.src_dict.string(src_tokens, args.remove_bpe)
                target_str = dataset.dst_dict.string(target_tokens, args.remove_bpe, escape_unk=True)

            if not args.quiet:
                print('S-{}\t{}'.format(sample_id, src_str))
                print('T-{}\t{}'.format(sample_id, target_str))

            # Process top predictions
            for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu(),
                    align_dict=align_dict,
                    dst_dict=dataset.dst_dict,
                    remove_bpe=args.remove_bpe)

                if not args.quiet:
                    print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))
                    print('A-{}\t{}'.format(sample_id, ' '.join(map(str, alignment))))

                # Score only the top hypothesis
                if i == 0:
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
                        target_tokens = tokenizer.Tokenizer.tokenize(target_str,
                                                                     dataset.dst_dict,
                                                                     add_if_not_exist=True)
                    scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(src_tokens.size(0))
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += 1

    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, 1. / gen_timer.avg))
    print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
def model_fn(model_dir):
    
    model_name = 'checkpoint_best.pt'
    model_path = os.path.join(model_dir, model_name)

    logger.info('Loading the model')
    with open(model_path, 'rb') as f:
        model_info = torch.load(f, map_location=torch.device('cpu'))

    # Will be overidden by the model_info['args'] - need to keep for pre-trained models   
    parser = options.get_generation_parser(interactive=True)
    # get args for FairSeq by converting the hyperparameters as if they were command-line arguments
    argv_copy = copy.deepcopy(sys.argv)
    # remove the modifications we did in the command-line arguments
    sys.argv[1:] = ['--path', model_path, model_dir]
    args = options.parse_args_and_arch(parser)
    # restore previous command-line args
    sys.argv = argv_copy
    
    saved_args = model_info['args']
    for key, value in vars(saved_args).items():
        setattr(args, key, value)

    args.data = [model_dir]
    print(args)

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    logger.info('Current device: {}'.format(device))

    model_paths = [os.path.join(model_dir, model_name)]
    models, model_args = utils.load_ensemble_for_inference(model_paths, task, model_arg_overrides={})

    # Set dictionaries
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()

    # Initialize generator
    translator = SequenceGenerator(
        models, tgt_dict, beam_size=args.beam, minlen=args.min_len,
        stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized),
        len_penalty=args.lenpen, unk_penalty=args.unkpen,
        sampling=args.sampling, sampling_topk=args.sampling_topk, sampling_temperature=args.sampling_temperature,
        diverse_beam_groups=args.diverse_beam_groups, diverse_beam_strength=args.diverse_beam_strength,
    )

    if device.type == 'cuda':
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    # align_dict = utils.load_align_dict(args.replace_unk)
    align_dict = utils.load_align_dict(None)


    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

    return dict(
        translator=translator,
        task=task,
        max_positions=max_positions,
        align_dict=align_dict,
        tgt_dict=tgt_dict,
        args=args,
        device=device,
    )
예제 #35
0
def main(args):
    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Setup task, e.g., translation
    task = tasks.setup_task(args)

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    model_paths = args.path.split(':')
    models, model_args = utils.load_ensemble_for_inference(
        model_paths, task, model_arg_overrides=eval(args.model_overrides))

    # Set dictionaries
    tgt_dict = task.target_dictionary

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()

    # Initialize generator
    translator = SequenceGenerator(
        models,
        tgt_dict,
        beam_size=args.beam,
        minlen=args.min_len,
        stop_early=(not args.no_early_stop),
        normalize_scores=(not args.unnormalized),
        len_penalty=args.lenpen,
        unk_penalty=args.unkpen,
        sampling=args.sampling,
        sampling_topk=args.sampling_topk,
        sampling_temperature=args.sampling_temperature,
        diverse_beam_groups=args.diverse_beam_groups,
        diverse_beam_strength=args.diverse_beam_strength,
    )

    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Initialize fluency scorer (and language model)
    fluency_scorer = FluencyScorer(args.lang_model_path, args.lang_model_data)

    def make_result(src_str, hypos, tgt_str='', iteration=0):
        results = []

        # compute fluency score for source string
        # the source string itself is an entry
        result0 = Correction()
        result0.iteration = iteration
        result0.src_str = result0.hypo_str = src_str
        fluency_scores = fluency_scorer.score_sentence(src_str).item()
        result0.fluency_scores = fluency_scores
        result0.fluency_scores_str = "Fluency Score: {:0.4f}".format(
            fluency_scores)
        results.append(result0)

        # Process top predictions
        for hypo in hypos[:min(len(hypos), args.nbest)]:
            result = Correction()
            result.iteration = iteration + 1
            result.src_str = src_str

            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu()
                if hypo['alignment'] is not None else None,
                align_dict=align_dict,
                tgt_dict=tgt_dict,
                remove_bpe=args.remove_bpe,
            )
            # result.hypos.append('H\t{}\t{}'.format(hypo['score'], hypo_str))
            result.hypo_str = hypo_str
            result.hypo_score = result.hypo_score_str = hypo['score']
            result.pos_scores_str = 'P\t{}'.format(' '.join(
                map(
                    lambda x: '{:.4f}'.format(x),
                    hypo['positional_scores'].tolist(),
                )))
            result.alignments_str = ('A\t{}'.format(' '.join(
                map(lambda x: str(utils.item(x)), alignment)))
                                     if args.print_alignment else None)

            # compute GLEU if target is provided
            if tgt_str:
                gleu_calculator = GLEU(args.n)
                gleu_calculator.load_text_sources([src_str])
                gleu_calculator.load_text_references([[tgt_str]])
                gleu_scores = gleu_calculator.run_iterations(
                    num_iterations=args.iter,
                    hypothesis=[hypo_str],
                    per_sent=args.sent)
                gleu_score = [g for g in gleu_scores][0][0] * 100
                result.gleu_scores = gleu_score
                result.gleu_scores_str = 'GLEU {:2.2f}'.format(gleu_score)
            else:
                result.gleu_scores_str = 'GLEU N/A (no target was provided. use format "source sentence|target setence" to provide a target/reference)'

            # compute fluency score
            fluency_scores = fluency_scorer.score_sentence(hypo_str).item()
            result.fluency_scores = fluency_scores
            result.fluency_scores_str = "Fluency Score: {:0.4f}".format(
                fluency_scores)

            results.append(result)

        return results

    def process_batch(batch, tgts, iteration):
        tokens = batch.tokens
        lengths = batch.lengths

        if use_cuda:
            tokens = tokens.cuda()
            lengths = lengths.cuda()

        encoder_input = {'src_tokens': tokens, 'src_lengths': lengths}
        translations = translator.generate(
            encoder_input,
            maxlen=int(args.max_len_a * tokens.size(1) + args.max_len_b),
        )

        return [
            make_result(batch.srcs[i], t, tgts[i], iteration)
            for i, t in enumerate(translations)
        ]

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models])

    if not args.server:
        listen_to_stdin(args, max_positions, task, process_batch)
    else:
        listen_to_web(args, max_positions, task, process_batch)