def add(self, other, positions=None, last=None): other = ensure_gpu(other, self.gpu_id) T.cuda.synchronize() if positions is not None: positions = ensure_gpu(positions, self.gpu_id) assert positions.size(0) == other.size(0), "Mismatch in number of positions and vectors" self.index.add_with_ids_c(other.size(0), cast_float(ptr(other)), cast_long(ptr(positions + 1))) else: other = other[:last, :] if last is not None else other self.index.add_c(other.size(0), cast_float(ptr(other))) T.cuda.synchronize()
def search(self, query, k=None): query = ensure_gpu(query, self.gpu_id) k = k if k else self.K (b, n) = query.size() distances = T.FloatTensor(b, k) labels = T.LongTensor(b, k) if self.gpu_id != -1: distances = distances.cuda(self.gpu_id) if self.gpu_id != -1: labels = labels.cuda(self.gpu_id) T.cuda.synchronize() self.index.search_c(b, cast_float(ptr(query)), k, cast_float(ptr(distances)), cast_long(ptr(labels))) T.cuda.synchronize() return (distances, (labels - 1))
def train(self, train): train = ensure_gpu(train, -1) T.cuda.synchronize() self.index.train_c(self.nr_cells, cast_float(ptr(train))) T.cuda.synchronize()