def test_evaluation(): ########################## ########## Settings ########################## lang_model = "deepset/roberta-base-squad2" do_lower_case = False test_assertions = True data_dir = Path("testsave/data/squad20") evaluation_filename = "dev-v2.0.json" device, n_gpu = initialize_device_settings(use_cuda=True) # loading models and evals model = AdaptiveModel.convert_from_transformers( lang_model, device=device, task_type="question_answering") model.prediction_heads[0].no_ans_boost = 0 model.prediction_heads[0].n_best = 1 tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case) processor = SquadProcessor( tokenizer=tokenizer, max_seq_len=256, label_list=["start_token", "end_token"], metric="squad", train_filename=None, dev_filename=None, dev_split=0, test_filename=evaluation_filename, data_dir=data_dir, doc_stride=128, ) starttime = time() data_silo = DataSilo(processor=processor, batch_size=50) model.connect_heads_with_processor(data_silo.processor.tasks, require_labels=True) evaluator = Evaluator(data_loader=data_silo.get_data_loader("test"), tasks=data_silo.processor.tasks, device=device) # 1. Test FARM internal evaluation results = evaluator.eval(model) f1_score = results[0]["f1"] * 100 em_score = results[0]["EM"] * 100 tnrecall = results[0]["top_n_recall"] * 100 elapsed = time() - starttime print(results) print(elapsed) gold_EM = 77.7478 gold_f1 = 82.1557 gold_tnrecall = 84.0646 # top 1 recall gold_elapsed = 70 # 4x V100 if test_assertions: np.testing.assert_allclose( em_score, gold_EM, rtol=0.001, err_msg=f"FARM Eval changed for EM by: {em_score-gold_EM}") np.testing.assert_allclose( f1_score, gold_f1, rtol=0.001, err_msg=f"FARM Eval changed for f1 score by: {f1_score-gold_f1}") np.testing.assert_allclose( tnrecall, gold_tnrecall, rtol=0.001, err_msg=f"FARM Eval changed for top 1 recall by: {em_score-gold_EM}" ) np.testing.assert_allclose( elapsed, gold_elapsed, rtol=0.1, err_msg= f"FARM Eval speed changed significantly by: {elapsed - gold_elapsed} seconds" ) # 2. Test FARM predictions with outside eval script starttime = time() model = Inferencer(model=model, processor=processor, task_type="question_answering", batch_size=50, gpu=device.type == "cuda") filename = data_dir / evaluation_filename result = model.inference_from_file(file=filename) elapsed = time() - starttime os.makedirs("../testsave", exist_ok=True) write_squad_predictions(predictions=result, predictions_filename=filename, out_filename="testsave/predictions.json") script_params = { "data_file": filename, "pred_file": "testsave/predictions.json", "na_prob_thresh": 1, "na_prob_file": False, "out_file": False } results_official = squad_evaluation.main(OPTS=DotMap(script_params)) f1_score = results_official["f1"] em_score = results_official["exact"] gold_EM = 78.4890 gold_f1 = 81.7104 gold_elapsed = 66 # 4x V100 print(elapsed) if test_assertions: np.testing.assert_allclose( em_score, gold_EM, rtol=0.001, err_msg= f"Eval with official script changed for EM by: {em_score - gold_EM}" ) np.testing.assert_allclose( f1_score, gold_f1, rtol=0.001, err_msg= f"Eval with official script changed for f1 score by: {f1_score - gold_f1}" ) np.testing.assert_allclose( elapsed, gold_elapsed, rtol=0.1, err_msg= f"Inference speed changed significantly by: {elapsed - gold_elapsed} seconds" )
def test_evaluation(): ########################## ########## Settings ########################## lang_model = "deepset/roberta-base-squad2" do_lower_case = False test_assertions = False data_dir = Path("testsave/data/squad20") evaluation_filename = "dev-v2.0.json" device, n_gpu = initialize_device_settings(use_cuda=True) # loading models and evals model = AdaptiveModel.convert_from_transformers( lang_model, device=device, task_type="question_answering") model.prediction_heads[0].no_ans_boost = 0 model.prediction_heads[0].n_best = 1 model.prediction_heads[0].n_best_per_sample = 1 tokenizer = Tokenizer.load(pretrained_model_name_or_path=lang_model, do_lower_case=do_lower_case) processor = SquadProcessor( tokenizer=tokenizer, max_seq_len=256, label_list=["start_token", "end_token"], metric="squad", train_filename=None, dev_filename=None, dev_split=0, test_filename=evaluation_filename, data_dir=data_dir, doc_stride=128, ) starttime = time() data_silo = DataSilo(processor=processor, batch_size=40 * n_gpu_factor) model.connect_heads_with_processor(data_silo.processor.tasks, require_labels=True) model, _ = optimize_model(model=model, device=device, local_rank=-1, optimizer=None, distributed=False, use_amp=None) evaluator = Evaluator(data_loader=data_silo.get_data_loader("test"), tasks=data_silo.processor.tasks, device=device) # 1. Test FARM internal evaluation results = evaluator.eval(model) f1_score = results[0]["f1"] * 100 em_score = results[0]["EM"] * 100 tnacc = results[0]["top_n_accuracy"] * 100 elapsed = time() - starttime print(results) print(elapsed) gold_EM = 78.4721 gold_f1 = 82.6671 gold_tnacc = 84.3594 # top 1 recall gold_elapsed = 40 # 4x V100 if test_assertions: np.testing.assert_allclose( em_score, gold_EM, rtol=0.001, err_msg=f"FARM Eval changed for EM by: {em_score-gold_EM}") np.testing.assert_allclose( f1_score, gold_f1, rtol=0.001, err_msg=f"FARM Eval changed for f1 score by: {f1_score-gold_f1}") np.testing.assert_allclose( tnacc, gold_tnacc, rtol=0.001, err_msg= f"FARM Eval changed for top 1 accuracy by: {tnacc-gold_tnacc}") np.testing.assert_allclose( elapsed, gold_elapsed, rtol=0.1, err_msg= f"FARM Eval speed changed significantly by: {elapsed - gold_elapsed} seconds" ) if not np.allclose(f1_score, gold_f1, rtol=0.001): error_messages.append( f"FARM Eval changed for f1 score by: {round(f1_score - gold_f1, 4)}" ) if not np.allclose(em_score, gold_EM, rtol=0.001): error_messages.append( f"FARM Eval changed for EM by: {round(em_score - gold_EM, 4)}") if not np.allclose(tnacc, gold_tnacc, rtol=0.001): error_messages.append( f"FARM Eval changed for top 1 accuracy by: {round(tnacc-gold_tnacc, 4)}" ) if not np.allclose(elapsed, gold_elapsed, rtol=0.1): error_messages.append( f"FARM Eval speed changed significantly by: {round(elapsed - gold_elapsed, 4)} seconds" ) benchmark_result = [{ "run": "FARM internal evaluation", "f1_change": round(f1_score - gold_f1, 4), "em_change": round(em_score - gold_EM, 4), "tnacc_change": round(tnacc - gold_tnacc, 4), "elapsed_change": round(elapsed - gold_elapsed, 4), "f1": f1_score, "em": em_score, "tnacc": round(tnacc, 4), "elapsed": elapsed, "f1_gold": gold_f1, "em_gold": gold_EM, "tnacc_gold": gold_tnacc, "elapsed_gold": gold_elapsed }] logger.info("\n\n" + pformat(benchmark_result[0]) + "\n") # # 2. Test FARM predictions with outside eval script starttime = time() model = Inferencer(model=model, processor=processor, task_type="question_answering", batch_size=40 * n_gpu_factor, gpu=device.type == "cuda") filename = data_dir / evaluation_filename result = model.inference_from_file(file=filename, return_json=False, multiprocessing_chunksize=80) results_squad = [x.to_squad_eval() for x in result] model.close_multiprocessing_pool() elapsed = time() - starttime os.makedirs("../testsave", exist_ok=True) write_squad_predictions(predictions=results_squad, predictions_filename=filename, out_filename="testsave/predictions.json") script_params = { "data_file": filename, "pred_file": "testsave/predictions.json", "na_prob_thresh": 1, "na_prob_file": False, "out_file": False } results_official = squad_evaluation.main(OPTS=DotMap(script_params)) f1_score = results_official["f1"] em_score = results_official["exact"] gold_EM = 79.878 gold_f1 = 82.917 gold_elapsed = 27 # 4x V100 print(elapsed) if test_assertions: np.testing.assert_allclose( em_score, gold_EM, rtol=0.001, err_msg= f"Eval with official script changed for EM by: {em_score - gold_EM}" ) np.testing.assert_allclose( f1_score, gold_f1, rtol=0.001, err_msg= f"Eval with official script changed for f1 score by: {f1_score - gold_f1}" ) np.testing.assert_allclose( elapsed, gold_elapsed, rtol=0.1, err_msg= f"Inference speed changed significantly by: {elapsed - gold_elapsed} seconds" ) if not np.allclose(f1_score, gold_f1, rtol=0.001): error_messages.append( f"Eval with official script changed for f1 score by: {round(f1_score - gold_f1, 4)}" ) if not np.allclose(em_score, gold_EM, rtol=0.001): error_messages.append( f"Eval with official script changed for EM by: {round(em_score - gold_EM, 4)}" ) if not np.allclose(elapsed, gold_elapsed, rtol=0.1): error_messages.append( f"Inference speed changed significantly by: {round(elapsed - gold_elapsed,4)} seconds" ) benchmark_result.append({ "run": "outside eval script", "f1_change": round(f1_score - gold_f1, 4), "em_change": round(em_score - gold_EM, 4), "tnacc_change": "-", "elapsed_change": round(elapsed - gold_elapsed, 4), "f1": f1_score, "em": em_score, "tnacc": "-", "elapsed": elapsed, "f1_gold": gold_f1, "em_gold": gold_EM, "tnacc_gold": "-", "elapsed_gold": gold_elapsed }) logger.info("\n\n" + pformat(benchmark_result[1]) + "\n") return benchmark_result